diff --git a/api.py b/api.py
index 04c3af8..c436f8b 100644
--- a/api.py
+++ b/api.py
@@ -7,12 +7,13 @@ import torch
 import torch.nn.functional as F
 import progressbar
 
+from models.cvvp import CVVP
 from models.diffusion_decoder import DiffusionTts
 from models.autoregressive import UnifiedVoice
 from tqdm import tqdm
 
 from models.arch_util import TorchMelSpectrogram
-from models.text_voice_clip import VoiceCLIP
+from models.clvp import CLVP
 from models.vocoder import UnivNetGenerator
 from utils.audio import load_audio, wav_to_univnet_mel, denormalize_tacotron_mel
 from utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
@@ -175,11 +176,15 @@ class TextToSpeech:
                                       average_conditioning_embeddings=True).cpu().eval()
         self.autoregressive_for_diffusion.load_state_dict(torch.load('.models/autoregressive.pth'))
 
-        self.clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12,
-                             text_seq_len=350, text_heads=8,
-                             num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430,
-                             use_xformers=True).cpu().eval()
-        self.clip.load_state_dict(torch.load('.models/clip.pth'))
+        self.clvp = CLVP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12,
+                         text_seq_len=350, text_heads=8,
+                         num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430,
+                         use_xformers=True).cpu().eval()
+        self.clvp.load_state_dict(torch.load('.models/clip.pth'))
+
+        self.cvvp = CVVP(model_dim=512, transformer_heads=8, dropout=0, mel_codes=8192, conditioning_enc_depth=8, cond_mask_percentage=0,
+                         speech_enc_depth=8, speech_mask_percentage=0, latent_multiplier=1).cpu().eval()
+        self.cvvp.load_state_dict(torch.load('.models/cvvp.pth'))
 
         self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
                                       in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
@@ -216,6 +221,8 @@ class TextToSpeech:
     def tts(self, text, voice_samples, k=1,
             # autoregressive generation parameters follow
             num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8, max_mel_tokens=500,
+            # CLVP & CVVP parameters
+            clvp_cvvp_slider=.5,
             # diffusion generation parameters follow
             diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0,
             **hf_generate_kwargs):
@@ -253,15 +260,22 @@ class TextToSpeech:
             self.autoregressive = self.autoregressive.cpu()
 
             clip_results = []
-            self.clip = self.clip.cuda()
+            self.clvp = self.clvp.cuda()
+            self.cvvp = self.cvvp.cuda()
             for batch in samples:
                 for i in range(batch.shape[0]):
                     batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
-                clip_results.append(self.clip(text.repeat(batch.shape[0], 1), batch, return_loss=False))
+                clvp = self.clvp(text.repeat(batch.shape[0], 1), batch, return_loss=False)
+                cvvp_accumulator = 0
+                for cl in range(conds.shape[1]):
+                    cvvp_accumulator = cvvp_accumulator + self.cvvp(conds[:, cl].repeat(batch.shape[0], 1, 1), batch, return_loss=False )
+                cvvp = cvvp_accumulator / conds.shape[1]
+                clip_results.append(clvp * clvp_cvvp_slider + cvvp * (1-clvp_cvvp_slider))
             clip_results = torch.cat(clip_results, dim=0)
             samples = torch.cat(samples, dim=0)
             best_results = samples[torch.topk(clip_results, k=k).indices]
-            self.clip = self.clip.cpu()
+            self.clvp = self.clvp.cpu()
+            self.cvvp = self.cvvp.cpu()
             del samples
 
             # The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning
diff --git a/models/autoregressive.py b/models/autoregressive.py
index 932e508..0c211f3 100644
--- a/models/autoregressive.py
+++ b/models/autoregressive.py
@@ -562,7 +562,8 @@ class UnifiedVoice(nn.Module):
         logits_processor = LogitsProcessorList([TypicalLogitsWarper(mass=typical_mass)]) if typical_sampling else LogitsProcessorList()
         max_length = trunc_index + self.max_mel_tokens - 1  if max_generate_length is None else trunc_index + max_generate_length
         gen = self.inference_model.generate(inputs, bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token, eos_token_id=self.stop_mel_token,
-                                            max_length=max_length, logits_processor=logits_processor, **hf_generate_kwargs)
+                                            max_length=max_length, logits_processor=logits_processor,
+                                            num_return_sequences=num_return_sequences, **hf_generate_kwargs)
         return gen[:, trunc_index:]
 
 
diff --git a/models/text_voice_clip.py b/models/clvp.py
similarity index 98%
rename from models/text_voice_clip.py
rename to models/clvp.py
index 674e62b..ecb8c40 100644
--- a/models/text_voice_clip.py
+++ b/models/clvp.py
@@ -16,7 +16,7 @@ def masked_mean(t, mask, dim = 1):
     t = t.masked_fill(~mask[:, :, None], 0.)
     return t.sum(dim = 1) / mask.sum(dim = 1)[..., None]
 
-class VoiceCLIP(nn.Module):
+class CLVP(nn.Module):
     """
     CLIP model retrofitted for performing contrastive evaluation between tokenized audio data and the corresponding
     transcribed text.
@@ -141,7 +141,7 @@ class VoiceCLIP(nn.Module):
 
 
 if __name__ == '__main__':
-    clip = VoiceCLIP(text_mask_percentage=.2, voice_mask_percentage=.2)
+    clip = CLVP(text_mask_percentage=.2, voice_mask_percentage=.2)
     clip(torch.randint(0,256,(2,120)),
          torch.tensor([50,100]),
          torch.randint(0,8192,(2,250)),
diff --git a/models/cvvp.py b/models/cvvp.py
index e69de29..0c9fd35 100644
--- a/models/cvvp.py
+++ b/models/cvvp.py
@@ -0,0 +1,133 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torch import einsum
+from torch.utils.checkpoint import checkpoint
+
+from models.arch_util import AttentionBlock
+from models.xtransformers import ContinuousTransformerWrapper, Encoder
+
+
+def exists(val):
+    return val is not None
+
+
+def masked_mean(t, mask):
+    t = t.masked_fill(~mask, 0.)
+    return t.sum(dim = 1) / mask.sum(dim = 1)
+
+
+class CollapsingTransformer(nn.Module):
+    def __init__(self, model_dim, output_dims, heads, dropout, depth, mask_percentage=0, **encoder_kwargs):
+        super().__init__()
+        self.transformer = ContinuousTransformerWrapper(
+            max_seq_len=-1,
+            use_pos_emb=False,
+            attn_layers=Encoder(
+                dim=model_dim,
+                depth=depth,
+                heads=heads,
+                ff_dropout=dropout,
+                ff_mult=1,
+                attn_dropout=dropout,
+                use_rmsnorm=True,
+                ff_glu=True,
+                rotary_pos_emb=True,
+                **encoder_kwargs,
+            ))
+        self.pre_combiner = nn.Sequential(nn.Conv1d(model_dim, output_dims, 1),
+                                          AttentionBlock(output_dims, num_heads=heads, do_checkpoint=False),
+                                          nn.Conv1d(output_dims, output_dims, 1))
+        self.mask_percentage = mask_percentage
+
+    def forward(self, x, **transformer_kwargs):
+        h = self.transformer(x, **transformer_kwargs)
+        h = h.permute(0,2,1)
+        h = checkpoint(self.pre_combiner, h).permute(0,2,1)
+        if self.training:
+            mask = torch.rand_like(h.float()) > self.mask_percentage
+        else:
+            mask = torch.ones_like(h.float()).bool()
+        return masked_mean(h, mask)
+
+
+class ConvFormatEmbedding(nn.Module):
+    def __init__(self, *args, **kwargs):
+        super().__init__()
+        self.emb = nn.Embedding(*args, **kwargs)
+
+    def forward(self, x):
+        y = self.emb(x)
+        return y.permute(0,2,1)
+
+
+class CVVP(nn.Module):
+    def __init__(
+            self,
+            model_dim=512,
+            transformer_heads=8,
+            dropout=.1,
+            conditioning_enc_depth=8,
+            cond_mask_percentage=0,
+            mel_channels=80,
+            mel_codes=None,
+            speech_enc_depth=8,
+            speech_mask_percentage=0,
+            latent_multiplier=1,
+    ):
+        super().__init__()
+        latent_dim = latent_multiplier*model_dim
+        self.temperature = nn.Parameter(torch.tensor(1.))
+
+        self.cond_emb = nn.Sequential(nn.Conv1d(mel_channels, model_dim//2, kernel_size=5, stride=2, padding=2),
+                                      nn.Conv1d(model_dim//2, model_dim, kernel_size=3, stride=2, padding=1))
+        self.conditioning_transformer = CollapsingTransformer(model_dim, model_dim, transformer_heads, dropout, conditioning_enc_depth, cond_mask_percentage)
+        self.to_conditioning_latent = nn.Linear(latent_dim, latent_dim, bias=False)
+
+        if mel_codes is None:
+            self.speech_emb = nn.Conv1d(mel_channels, model_dim, kernel_size=5, padding=2)
+        else:
+            self.speech_emb = ConvFormatEmbedding(mel_codes, model_dim)
+        self.speech_transformer = CollapsingTransformer(model_dim, latent_dim, transformer_heads, dropout, speech_enc_depth, speech_mask_percentage)
+        self.to_speech_latent = nn.Linear(latent_dim, latent_dim, bias=False)
+
+    def get_grad_norm_parameter_groups(self):
+        return {
+            'conditioning': list(self.conditioning_transformer.parameters()),
+            'speech': list(self.speech_transformer.parameters()),
+        }
+
+    def forward(
+            self,
+            mel_cond,
+            mel_input,
+            return_loss=False
+    ):
+        cond_emb = self.cond_emb(mel_cond).permute(0,2,1)
+        enc_cond = self.conditioning_transformer(cond_emb)
+        cond_latents = self.to_conditioning_latent(enc_cond)
+
+        speech_emb = self.speech_emb(mel_input).permute(0,2,1)
+        enc_speech = self.speech_transformer(speech_emb)
+        speech_latents = self.to_speech_latent(enc_speech)
+
+
+        cond_latents, speech_latents = map(lambda t: F.normalize(t, p=2, dim=-1), (cond_latents, speech_latents))
+        temp = self.temperature.exp()
+
+        if not return_loss:
+            sim = einsum('n d, n d -> n', cond_latents, speech_latents) * temp
+            return sim
+
+        sim = einsum('i d, j d -> i j', cond_latents, speech_latents) * temp
+        labels = torch.arange(cond_latents.shape[0], device=mel_input.device)
+        loss = (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2
+
+        return loss
+
+
+if __name__ == '__main__':
+    clvp = CVVP()
+    clvp(torch.randn(2,80,100),
+         torch.randn(2,80,95),
+         return_loss=True)
\ No newline at end of file
diff --git a/read.py b/read.py
index 22623ac..fbff527 100644
--- a/read.py
+++ b/read.py
@@ -28,7 +28,7 @@ def split_and_recombine_text(texts, desired_length=200, max_len=300):
 
 if __name__ == '__main__':
     parser = argparse.ArgumentParser()
-    parser.add_argument('--textfile', type=str, help='A file containing the text to read.', default="data/riding_hood.txt")
+    parser.add_argument('--textfile', type=str, help='A file containing the text to read.', default="data/riding_hood2.txt")
     parser.add_argument('--voice', type=str, help='Selects the voice to use for generation. See options in voices/ directory (and add your own!) '
                                                  'Use the & character to join two voices together. Use a comma to perform inference on multiple voices.', default='patrick_stewart')
     parser.add_argument('--output_path', type=str, help='Where to store outputs.', default='results/longform/')