2022-03-22 17:52:46 +00:00
|
|
|
"""
|
|
|
|
This model is based on OpenAI's UNet from improved diffusion, with modifications to support a MEL conditioning signal
|
|
|
|
and an audio conditioning input. It has also been simplified somewhat.
|
|
|
|
Credit: https://github.com/openai/improved-diffusion
|
|
|
|
"""
|
|
|
|
import functools
|
|
|
|
import math
|
|
|
|
from abc import abstractmethod
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from torch import autocast
|
|
|
|
from torch.nn import Linear
|
|
|
|
from torch.utils.checkpoint import checkpoint
|
|
|
|
from x_transformers import ContinuousTransformerWrapper, Encoder
|
|
|
|
|
|
|
|
from models.arch_util import normalization, zero_module, Downsample, Upsample, AudioMiniEncoder, AttentionBlock
|
|
|
|
|
|
|
|
|
|
|
|
def is_latent(t):
|
|
|
|
return t.dtype == torch.float
|
|
|
|
|
|
|
|
|
|
|
|
def is_sequence(t):
|
|
|
|
return t.dtype == torch.long
|
|
|
|
|
|
|
|
|
|
|
|
def ceil_multiple(base, multiple):
|
|
|
|
res = base % multiple
|
|
|
|
if res == 0:
|
|
|
|
return base
|
|
|
|
return base + (multiple - res)
|
|
|
|
|
|
|
|
|
|
|
|
def timestep_embedding(timesteps, dim, max_period=10000):
|
|
|
|
"""
|
|
|
|
Create sinusoidal timestep embeddings.
|
|
|
|
|
|
|
|
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
|
|
|
These may be fractional.
|
|
|
|
:param dim: the dimension of the output.
|
|
|
|
:param max_period: controls the minimum frequency of the embeddings.
|
|
|
|
:return: an [N x dim] Tensor of positional embeddings.
|
|
|
|
"""
|
|
|
|
half = dim // 2
|
|
|
|
freqs = torch.exp(
|
|
|
|
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
|
|
|
).to(device=timesteps.device)
|
|
|
|
args = timesteps[:, None].float() * freqs[None]
|
|
|
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
|
|
|
if dim % 2:
|
|
|
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
|
|
|
return embedding
|
|
|
|
|
|
|
|
|
|
|
|
class TimestepBlock(nn.Module):
|
|
|
|
"""
|
|
|
|
Any module where forward() takes timestep embeddings as a second argument.
|
|
|
|
"""
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def forward(self, x, emb):
|
|
|
|
"""
|
|
|
|
Apply the module to `x` given `emb` timestep embeddings.
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
|
|
|
"""
|
|
|
|
A sequential module that passes timestep embeddings to the children that
|
|
|
|
support it as an extra input.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def forward(self, x, emb):
|
|
|
|
for layer in self:
|
|
|
|
if isinstance(layer, TimestepBlock):
|
|
|
|
x = layer(x, emb)
|
|
|
|
else:
|
|
|
|
x = layer(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class ResBlock(TimestepBlock):
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
channels,
|
|
|
|
emb_channels,
|
|
|
|
dropout,
|
|
|
|
out_channels=None,
|
|
|
|
kernel_size=3,
|
|
|
|
efficient_config=True,
|
|
|
|
use_scale_shift_norm=False,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
self.channels = channels
|
|
|
|
self.emb_channels = emb_channels
|
|
|
|
self.dropout = dropout
|
|
|
|
self.out_channels = out_channels or channels
|
|
|
|
self.use_scale_shift_norm = use_scale_shift_norm
|
|
|
|
padding = {1: 0, 3: 1, 5: 2}[kernel_size]
|
|
|
|
eff_kernel = 1 if efficient_config else 3
|
|
|
|
eff_padding = 0 if efficient_config else 1
|
|
|
|
|
|
|
|
self.in_layers = nn.Sequential(
|
|
|
|
normalization(channels),
|
|
|
|
nn.SiLU(),
|
|
|
|
nn.Conv1d(channels, self.out_channels, eff_kernel, padding=eff_padding),
|
|
|
|
)
|
|
|
|
|
|
|
|
self.emb_layers = nn.Sequential(
|
|
|
|
nn.SiLU(),
|
|
|
|
Linear(
|
|
|
|
emb_channels,
|
|
|
|
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
|
|
|
),
|
|
|
|
)
|
|
|
|
self.out_layers = nn.Sequential(
|
|
|
|
normalization(self.out_channels),
|
|
|
|
nn.SiLU(),
|
|
|
|
nn.Dropout(p=dropout),
|
|
|
|
zero_module(
|
|
|
|
nn.Conv1d(self.out_channels, self.out_channels, kernel_size, padding=padding)
|
|
|
|
),
|
|
|
|
)
|
|
|
|
|
|
|
|
if self.out_channels == channels:
|
|
|
|
self.skip_connection = nn.Identity()
|
|
|
|
else:
|
|
|
|
self.skip_connection = nn.Conv1d(channels, self.out_channels, eff_kernel, padding=eff_padding)
|
|
|
|
|
|
|
|
def forward(self, x, emb):
|
|
|
|
"""
|
|
|
|
Apply the block to a Tensor, conditioned on a timestep embedding.
|
|
|
|
|
|
|
|
:param x: an [N x C x ...] Tensor of features.
|
|
|
|
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
|
|
|
:return: an [N x C x ...] Tensor of outputs.
|
|
|
|
"""
|
|
|
|
return checkpoint(
|
|
|
|
self._forward, x, emb
|
|
|
|
)
|
|
|
|
|
|
|
|
def _forward(self, x, emb):
|
|
|
|
h = self.in_layers(x)
|
|
|
|
emb_out = self.emb_layers(emb).type(h.dtype)
|
|
|
|
while len(emb_out.shape) < len(h.shape):
|
|
|
|
emb_out = emb_out[..., None]
|
|
|
|
if self.use_scale_shift_norm:
|
|
|
|
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
|
|
|
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
|
|
|
h = out_norm(h) * (1 + scale) + shift
|
|
|
|
h = out_rest(h)
|
|
|
|
else:
|
|
|
|
h = h + emb_out
|
|
|
|
h = self.out_layers(h)
|
|
|
|
return self.skip_connection(x) + h
|
|
|
|
|
|
|
|
|
|
|
|
class CheckpointedLayer(nn.Module):
|
|
|
|
"""
|
|
|
|
Wraps a module. When forward() is called, passes kwargs that require_grad through torch.checkpoint() and bypasses
|
|
|
|
checkpoint for all other args.
|
|
|
|
"""
|
|
|
|
def __init__(self, wrap):
|
|
|
|
super().__init__()
|
|
|
|
self.wrap = wrap
|
|
|
|
|
|
|
|
def forward(self, x, *args, **kwargs):
|
|
|
|
for k, v in kwargs.items():
|
|
|
|
assert not (isinstance(v, torch.Tensor) and v.requires_grad) # This would screw up checkpointing.
|
|
|
|
partial = functools.partial(self.wrap, **kwargs)
|
|
|
|
return torch.utils.checkpoint.checkpoint(partial, x, *args)
|
|
|
|
|
|
|
|
|
|
|
|
class CheckpointedXTransformerEncoder(nn.Module):
|
|
|
|
"""
|
|
|
|
Wraps a ContinuousTransformerWrapper and applies CheckpointedLayer to each layer and permutes from channels-mid
|
|
|
|
to channels-last that XTransformer expects.
|
|
|
|
"""
|
|
|
|
def __init__(self, needs_permute=True, **xtransformer_kwargs):
|
|
|
|
super().__init__()
|
|
|
|
self.transformer = ContinuousTransformerWrapper(**xtransformer_kwargs)
|
|
|
|
self.needs_permute = needs_permute
|
|
|
|
|
|
|
|
for i in range(len(self.transformer.attn_layers.layers)):
|
|
|
|
n, b, r = self.transformer.attn_layers.layers[i]
|
|
|
|
self.transformer.attn_layers.layers[i] = nn.ModuleList([n, CheckpointedLayer(b), r])
|
|
|
|
|
|
|
|
def forward(self, x, **kwargs):
|
|
|
|
if self.needs_permute:
|
|
|
|
x = x.permute(0,2,1)
|
|
|
|
h = self.transformer(x, **kwargs)
|
|
|
|
return h.permute(0,2,1)
|
|
|
|
|
|
|
|
|
|
|
|
class DiffusionTts(nn.Module):
|
|
|
|
"""
|
|
|
|
The full UNet model with attention and timestep embedding.
|
|
|
|
|
|
|
|
Customized to be conditioned on an aligned prior derived from a autoregressive
|
|
|
|
GPT-style model.
|
|
|
|
|
|
|
|
:param in_channels: channels in the input Tensor.
|
|
|
|
:param in_latent_channels: channels from the input latent.
|
|
|
|
:param model_channels: base channel count for the model.
|
|
|
|
:param out_channels: channels in the output Tensor.
|
|
|
|
:param num_res_blocks: number of residual blocks per downsample.
|
|
|
|
:param attention_resolutions: a collection of downsample rates at which
|
|
|
|
attention will take place. May be a set, list, or tuple.
|
|
|
|
For example, if this contains 4, then at 4x downsampling, attention
|
|
|
|
will be used.
|
|
|
|
:param dropout: the dropout probability.
|
|
|
|
:param channel_mult: channel multiplier for each level of the UNet.
|
|
|
|
:param conv_resample: if True, use learned convolutions for upsampling and
|
|
|
|
downsampling.
|
|
|
|
:param num_heads: the number of attention heads in each attention layer.
|
|
|
|
:param num_heads_channels: if specified, ignore num_heads and instead use
|
|
|
|
a fixed channel width per attention head.
|
|
|
|
:param num_heads_upsample: works with num_heads to set a different number
|
|
|
|
of heads for upsampling. Deprecated.
|
|
|
|
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
|
|
|
:param resblock_updown: use residual blocks for up/downsampling.
|
|
|
|
:param use_new_attention_order: use a different attention pattern for potentially
|
|
|
|
increased efficiency.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
model_channels,
|
|
|
|
in_channels=1,
|
|
|
|
in_latent_channels=1024,
|
|
|
|
in_tokens=8193,
|
|
|
|
conditioning_dim_factor=8,
|
|
|
|
conditioning_expansion=4,
|
|
|
|
out_channels=2, # mean and variance
|
|
|
|
dropout=0,
|
|
|
|
# res 1, 2, 4, 8,16,32,64,128,256,512, 1K, 2K
|
|
|
|
channel_mult= (1,1.5,2, 3, 4, 6, 8, 12, 16, 24, 32, 48),
|
|
|
|
num_res_blocks=(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2),
|
|
|
|
# spec_cond: 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0)
|
|
|
|
# attn: 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1
|
|
|
|
token_conditioning_resolutions=(1,16,),
|
|
|
|
attention_resolutions=(512,1024,2048),
|
|
|
|
conv_resample=True,
|
|
|
|
use_fp16=False,
|
|
|
|
num_heads=1,
|
|
|
|
num_head_channels=-1,
|
|
|
|
num_heads_upsample=-1,
|
|
|
|
kernel_size=3,
|
|
|
|
scale_factor=2,
|
|
|
|
time_embed_dim_multiplier=4,
|
|
|
|
freeze_main_net=False,
|
|
|
|
efficient_convs=True, # Uses kernels with width of 1 in several places rather than 3.
|
|
|
|
use_scale_shift_norm=True,
|
|
|
|
# Parameters for regularization.
|
|
|
|
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
|
|
|
|
# Parameters for super-sampling.
|
|
|
|
super_sampling=False,
|
|
|
|
super_sampling_max_noising_factor=.1,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
if num_heads_upsample == -1:
|
|
|
|
num_heads_upsample = num_heads
|
|
|
|
|
|
|
|
if super_sampling:
|
|
|
|
in_channels *= 2 # In super-sampling mode, the LR input is concatenated directly onto the input.
|
|
|
|
self.in_channels = in_channels
|
|
|
|
self.model_channels = model_channels
|
|
|
|
self.out_channels = out_channels
|
|
|
|
self.attention_resolutions = attention_resolutions
|
|
|
|
self.dropout = dropout
|
|
|
|
self.channel_mult = channel_mult
|
|
|
|
self.conv_resample = conv_resample
|
|
|
|
self.num_heads = num_heads
|
|
|
|
self.num_head_channels = num_head_channels
|
|
|
|
self.num_heads_upsample = num_heads_upsample
|
|
|
|
self.super_sampling_enabled = super_sampling
|
|
|
|
self.super_sampling_max_noising_factor = super_sampling_max_noising_factor
|
|
|
|
self.unconditioned_percentage = unconditioned_percentage
|
|
|
|
self.enable_fp16 = use_fp16
|
|
|
|
self.alignment_size = 2 ** (len(channel_mult)+1)
|
|
|
|
self.freeze_main_net = freeze_main_net
|
|
|
|
padding = 1 if kernel_size == 3 else 2
|
|
|
|
down_kernel = 1 if efficient_convs else 3
|
|
|
|
|
|
|
|
time_embed_dim = model_channels * time_embed_dim_multiplier
|
|
|
|
self.time_embed = nn.Sequential(
|
|
|
|
Linear(model_channels, time_embed_dim),
|
|
|
|
nn.SiLU(),
|
|
|
|
Linear(time_embed_dim, time_embed_dim),
|
|
|
|
)
|
|
|
|
|
|
|
|
conditioning_dim = model_channels * conditioning_dim_factor
|
|
|
|
# Either code_converter or latent_converter is used, depending on what type of conditioning data is fed.
|
|
|
|
# This model is meant to be able to be trained on both for efficiency purposes - it is far less computationally
|
|
|
|
# complex to generate tokens, while generating latents will normally mean propagating through a deep autoregressive
|
|
|
|
# transformer network.
|
|
|
|
self.code_converter = nn.Sequential(
|
|
|
|
nn.Embedding(in_tokens, conditioning_dim),
|
|
|
|
CheckpointedXTransformerEncoder(
|
|
|
|
needs_permute=False,
|
|
|
|
max_seq_len=-1,
|
|
|
|
use_pos_emb=False,
|
|
|
|
attn_layers=Encoder(
|
|
|
|
dim=conditioning_dim,
|
|
|
|
depth=3,
|
|
|
|
heads=num_heads,
|
|
|
|
ff_dropout=dropout,
|
|
|
|
attn_dropout=dropout,
|
|
|
|
use_rmsnorm=True,
|
|
|
|
ff_glu=True,
|
|
|
|
rotary_emb_dim=True,
|
|
|
|
)
|
|
|
|
))
|
|
|
|
self.latent_converter = nn.Conv1d(in_latent_channels, conditioning_dim, 1)
|
|
|
|
self.aligned_latent_padding_embedding = nn.Parameter(torch.randn(1,in_latent_channels,1))
|
|
|
|
if in_channels > 60: # It's a spectrogram.
|
|
|
|
self.contextual_embedder = nn.Sequential(nn.Conv1d(in_channels,conditioning_dim,3,padding=1,stride=2),
|
|
|
|
CheckpointedXTransformerEncoder(
|
|
|
|
needs_permute=True,
|
|
|
|
max_seq_len=-1,
|
|
|
|
use_pos_emb=False,
|
|
|
|
attn_layers=Encoder(
|
|
|
|
dim=conditioning_dim,
|
|
|
|
depth=4,
|
|
|
|
heads=num_heads,
|
|
|
|
ff_dropout=dropout,
|
|
|
|
attn_dropout=dropout,
|
|
|
|
use_rmsnorm=True,
|
|
|
|
ff_glu=True,
|
|
|
|
rotary_emb_dim=True,
|
|
|
|
)
|
|
|
|
))
|
|
|
|
else:
|
|
|
|
self.contextual_embedder = AudioMiniEncoder(1, conditioning_dim, base_channels=32, depth=6, resnet_blocks=1,
|
|
|
|
attn_blocks=3, num_attn_heads=8, dropout=dropout, downsample_factor=4, kernel_size=5)
|
|
|
|
self.conditioning_conv = nn.Conv1d(conditioning_dim*2, conditioning_dim, 1)
|
|
|
|
self.unconditioned_embedding = nn.Parameter(torch.randn(1,conditioning_dim,1))
|
|
|
|
self.conditioning_timestep_integrator = TimestepEmbedSequential(
|
|
|
|
ResBlock(conditioning_dim, time_embed_dim, dropout, out_channels=conditioning_dim, kernel_size=1, use_scale_shift_norm=use_scale_shift_norm),
|
|
|
|
AttentionBlock(conditioning_dim, num_heads=num_heads, num_head_channels=num_head_channels),
|
|
|
|
ResBlock(conditioning_dim, time_embed_dim, dropout, out_channels=conditioning_dim, kernel_size=1, use_scale_shift_norm=use_scale_shift_norm),
|
|
|
|
AttentionBlock(conditioning_dim, num_heads=num_heads, num_head_channels=num_head_channels),
|
|
|
|
ResBlock(conditioning_dim, time_embed_dim, dropout, out_channels=conditioning_dim, kernel_size=1, use_scale_shift_norm=use_scale_shift_norm),
|
|
|
|
)
|
|
|
|
self.conditioning_expansion = conditioning_expansion
|
|
|
|
|
|
|
|
self.input_blocks = nn.ModuleList(
|
|
|
|
[
|
|
|
|
TimestepEmbedSequential(
|
|
|
|
nn.Conv1d(in_channels, model_channels, kernel_size, padding=padding)
|
|
|
|
)
|
|
|
|
]
|
|
|
|
)
|
|
|
|
token_conditioning_blocks = []
|
|
|
|
self._feature_size = model_channels
|
|
|
|
input_block_chans = [model_channels]
|
|
|
|
ch = model_channels
|
|
|
|
ds = 1
|
|
|
|
|
|
|
|
for level, (mult, num_blocks) in enumerate(zip(channel_mult, num_res_blocks)):
|
|
|
|
if ds in token_conditioning_resolutions:
|
|
|
|
token_conditioning_block = nn.Conv1d(conditioning_dim, ch, 1)
|
|
|
|
token_conditioning_block.weight.data *= .02
|
|
|
|
self.input_blocks.append(token_conditioning_block)
|
|
|
|
token_conditioning_blocks.append(token_conditioning_block)
|
|
|
|
|
|
|
|
for _ in range(num_blocks):
|
|
|
|
layers = [
|
|
|
|
ResBlock(
|
|
|
|
ch,
|
|
|
|
time_embed_dim,
|
|
|
|
dropout,
|
|
|
|
out_channels=int(mult * model_channels),
|
|
|
|
kernel_size=kernel_size,
|
|
|
|
efficient_config=efficient_convs,
|
|
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
|
|
)
|
|
|
|
]
|
|
|
|
ch = int(mult * model_channels)
|
|
|
|
if ds in attention_resolutions:
|
|
|
|
layers.append(
|
|
|
|
AttentionBlock(
|
|
|
|
ch,
|
|
|
|
num_heads=num_heads,
|
|
|
|
num_head_channels=num_head_channels,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
|
|
|
self._feature_size += ch
|
|
|
|
input_block_chans.append(ch)
|
|
|
|
if level != len(channel_mult) - 1:
|
|
|
|
out_ch = ch
|
|
|
|
self.input_blocks.append(
|
|
|
|
TimestepEmbedSequential(
|
|
|
|
Downsample(
|
|
|
|
ch, conv_resample, out_channels=out_ch, factor=scale_factor, ksize=down_kernel, pad=0 if down_kernel == 1 else 1
|
|
|
|
)
|
|
|
|
)
|
|
|
|
)
|
|
|
|
ch = out_ch
|
|
|
|
input_block_chans.append(ch)
|
|
|
|
ds *= 2
|
|
|
|
self._feature_size += ch
|
|
|
|
|
|
|
|
self.middle_block = TimestepEmbedSequential(
|
|
|
|
ResBlock(
|
|
|
|
ch,
|
|
|
|
time_embed_dim,
|
|
|
|
dropout,
|
|
|
|
kernel_size=kernel_size,
|
|
|
|
efficient_config=efficient_convs,
|
|
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
|
|
),
|
|
|
|
AttentionBlock(
|
|
|
|
ch,
|
|
|
|
num_heads=num_heads,
|
|
|
|
num_head_channels=num_head_channels,
|
|
|
|
),
|
|
|
|
ResBlock(
|
|
|
|
ch,
|
|
|
|
time_embed_dim,
|
|
|
|
dropout,
|
|
|
|
kernel_size=kernel_size,
|
|
|
|
efficient_config=efficient_convs,
|
|
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
|
|
),
|
|
|
|
)
|
|
|
|
self._feature_size += ch
|
|
|
|
|
|
|
|
self.output_blocks = nn.ModuleList([])
|
|
|
|
for level, (mult, num_blocks) in list(enumerate(zip(channel_mult, num_res_blocks)))[::-1]:
|
|
|
|
for i in range(num_blocks + 1):
|
|
|
|
ich = input_block_chans.pop()
|
|
|
|
layers = [
|
|
|
|
ResBlock(
|
|
|
|
ch + ich,
|
|
|
|
time_embed_dim,
|
|
|
|
dropout,
|
|
|
|
out_channels=int(model_channels * mult),
|
|
|
|
kernel_size=kernel_size,
|
|
|
|
efficient_config=efficient_convs,
|
|
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
|
|
)
|
|
|
|
]
|
|
|
|
ch = int(model_channels * mult)
|
|
|
|
if ds in attention_resolutions:
|
|
|
|
layers.append(
|
|
|
|
AttentionBlock(
|
|
|
|
ch,
|
|
|
|
num_heads=num_heads_upsample,
|
|
|
|
num_head_channels=num_head_channels,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
if level and i == num_blocks:
|
|
|
|
out_ch = ch
|
|
|
|
layers.append(
|
|
|
|
Upsample(ch, conv_resample, out_channels=out_ch, factor=scale_factor)
|
|
|
|
)
|
|
|
|
ds //= 2
|
|
|
|
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
|
|
|
self._feature_size += ch
|
|
|
|
|
|
|
|
self.out = nn.Sequential(
|
|
|
|
normalization(ch),
|
|
|
|
nn.SiLU(),
|
|
|
|
zero_module(nn.Conv1d(model_channels, out_channels, kernel_size, padding=padding)),
|
|
|
|
)
|
|
|
|
|
|
|
|
def fix_alignment(self, x, aligned_conditioning):
|
|
|
|
"""
|
|
|
|
The UNet requires that the input <x> is a certain multiple of 2, defined by the UNet depth. Enforce this by
|
|
|
|
padding both <x> and <aligned_conditioning> before forward propagation and removing the padding before returning.
|
|
|
|
"""
|
|
|
|
cm = ceil_multiple(x.shape[-1], self.alignment_size)
|
|
|
|
if cm != 0:
|
|
|
|
pc = (cm-x.shape[-1])/x.shape[-1]
|
|
|
|
x = F.pad(x, (0,cm-x.shape[-1]))
|
|
|
|
# Also fix aligned_latent, which is aligned to x.
|
|
|
|
if is_latent(aligned_conditioning):
|
|
|
|
aligned_conditioning = torch.cat([aligned_conditioning,
|
|
|
|
self.aligned_latent_padding_embedding.repeat(x.shape[0], 1, int(pc * aligned_conditioning.shape[-1]))], dim=-1)
|
|
|
|
else:
|
|
|
|
aligned_conditioning = F.pad(aligned_conditioning, (0, int(pc*aligned_conditioning.shape[-1])))
|
|
|
|
return x, aligned_conditioning
|
|
|
|
|
2022-03-27 03:32:12 +00:00
|
|
|
def timestep_independent(self, aligned_conditioning, conditioning_input):
|
2022-03-22 17:52:46 +00:00
|
|
|
# Shuffle aligned_latent to BxCxS format
|
|
|
|
if is_latent(aligned_conditioning):
|
|
|
|
aligned_conditioning = aligned_conditioning.permute(0, 2, 1)
|
|
|
|
|
2022-03-27 03:32:12 +00:00
|
|
|
with autocast(aligned_conditioning.device.type, enabled=self.enable_fp16):
|
|
|
|
cond_emb = self.contextual_embedder(conditioning_input)
|
|
|
|
if len(cond_emb.shape) == 3: # Just take the first element.
|
|
|
|
cond_emb = cond_emb[:, :, 0]
|
|
|
|
if is_latent(aligned_conditioning):
|
|
|
|
code_emb = self.latent_converter(aligned_conditioning)
|
|
|
|
else:
|
|
|
|
code_emb = self.code_converter(aligned_conditioning)
|
|
|
|
cond_emb = cond_emb.unsqueeze(-1).repeat(1, 1, code_emb.shape[-1])
|
|
|
|
code_emb = self.conditioning_conv(torch.cat([cond_emb, code_emb], dim=1))
|
|
|
|
return code_emb
|
2022-03-22 17:52:46 +00:00
|
|
|
|
2022-03-27 03:32:12 +00:00
|
|
|
def forward(self, x, timesteps, precomputed_aligned_embeddings, conditioning_free=False):
|
|
|
|
assert x.shape[-1] % self.alignment_size == 0
|
2022-03-22 17:52:46 +00:00
|
|
|
|
2022-03-27 03:32:12 +00:00
|
|
|
with autocast(x.device.type, enabled=self.enable_fp16):
|
2022-03-22 17:52:46 +00:00
|
|
|
if conditioning_free:
|
|
|
|
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, 1)
|
|
|
|
else:
|
2022-03-27 03:32:12 +00:00
|
|
|
code_emb = precomputed_aligned_embeddings
|
|
|
|
|
|
|
|
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
2022-03-22 17:52:46 +00:00
|
|
|
code_emb = torch.repeat_interleave(code_emb, self.conditioning_expansion, dim=-1)
|
|
|
|
code_emb = self.conditioning_timestep_integrator(code_emb, time_emb)
|
|
|
|
|
|
|
|
first = True
|
|
|
|
time_emb = time_emb.float()
|
|
|
|
h = x
|
2022-03-27 03:32:12 +00:00
|
|
|
hs = []
|
2022-03-22 17:52:46 +00:00
|
|
|
for k, module in enumerate(self.input_blocks):
|
|
|
|
if isinstance(module, nn.Conv1d):
|
|
|
|
h_tok = F.interpolate(module(code_emb), size=(h.shape[-1]), mode='nearest')
|
|
|
|
h = h + h_tok
|
|
|
|
else:
|
|
|
|
with autocast(x.device.type, enabled=self.enable_fp16 and not first):
|
|
|
|
# First block has autocast disabled to allow a high precision signal to be properly vectorized.
|
|
|
|
h = module(h, time_emb)
|
|
|
|
hs.append(h)
|
|
|
|
first = False
|
|
|
|
h = self.middle_block(h, time_emb)
|
|
|
|
for module in self.output_blocks:
|
|
|
|
h = torch.cat([h, hs.pop()], dim=1)
|
|
|
|
h = module(h, time_emb)
|
|
|
|
|
|
|
|
# Last block also has autocast disabled for high-precision outputs.
|
|
|
|
h = h.float()
|
|
|
|
out = self.out(h)
|
|
|
|
|
2022-03-27 03:32:12 +00:00
|
|
|
return out
|
2022-03-22 17:52:46 +00:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
clip = torch.randn(2, 1, 32868)
|
|
|
|
aligned_latent = torch.randn(2,388,1024)
|
|
|
|
aligned_sequence = torch.randint(0,8192,(2,388))
|
|
|
|
cond = torch.randn(2, 1, 44000)
|
|
|
|
ts = torch.LongTensor([600, 600])
|
|
|
|
model = DiffusionTts(128,
|
|
|
|
channel_mult=[1,1.5,2, 3, 4, 6, 8],
|
|
|
|
num_res_blocks=[2, 2, 2, 2, 2, 2, 1],
|
|
|
|
token_conditioning_resolutions=[1,4,16,64],
|
|
|
|
attention_resolutions=[],
|
|
|
|
num_heads=8,
|
|
|
|
kernel_size=3,
|
|
|
|
scale_factor=2,
|
|
|
|
time_embed_dim_multiplier=4,
|
|
|
|
super_sampling=False,
|
|
|
|
efficient_convs=False)
|
|
|
|
# Test with latent aligned conditioning
|
|
|
|
o = model(clip, ts, aligned_latent, cond)
|
|
|
|
# Test with sequence aligned conditioning
|
|
|
|
o = model(clip, ts, aligned_sequence, cond)
|