Merge pull request #3 from osanseviero/main

Misc improvements and packaging
This commit is contained in:
James Betker 2022-04-27 09:01:32 -06:00 committed by GitHub
commit 04dcc01615
27 changed files with 32 additions and 22 deletions

View File

@ -7,4 +7,6 @@ inflect
progressbar progressbar
einops einops
unidecode unidecode
entmax entmax
scipy
librosa

View File

@ -8,18 +8,18 @@ import torch.nn.functional as F
import progressbar import progressbar
import torchaudio import torchaudio
from models.classifier import AudioMiniEncoderWithClassifierHead from tortoise_tts.models.classifier import AudioMiniEncoderWithClassifierHead
from models.cvvp import CVVP from tortoise_tts.models.cvvp import CVVP
from models.diffusion_decoder import DiffusionTts from tortoise_tts.models.diffusion_decoder import DiffusionTts
from models.autoregressive import UnifiedVoice from tortoise_tts.models.autoregressive import UnifiedVoice
from tqdm import tqdm from tqdm import tqdm
from models.arch_util import TorchMelSpectrogram from tortoise_tts.models.arch_util import TorchMelSpectrogram
from models.clvp import CLVP from tortoise_tts.models.clvp import CLVP
from models.vocoder import UnivNetGenerator from tortoise_tts.models.vocoder import UnivNetGenerator
from utils.audio import load_audio, wav_to_univnet_mel, denormalize_tacotron_mel from tortoise_tts.utils.audio import load_audio, wav_to_univnet_mel, denormalize_tacotron_mel
from utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule from tortoise_tts.utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
from utils.tokenizer import VoiceBpeTokenizer, lev_distance from tortoise_tts.utils.tokenizer import VoiceBpeTokenizer, lev_distance
pbar = None pbar = None

View File

@ -5,7 +5,7 @@ import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
import torchaudio import torchaudio
from models.xtransformers import ContinuousTransformerWrapper, RelativePositionBias from tortoise_tts.models.xtransformers import ContinuousTransformerWrapper, RelativePositionBias
def zero_module(module): def zero_module(module):

View File

@ -6,8 +6,8 @@ import torch.nn.functional as F
from transformers import GPT2Config, GPT2PreTrainedModel, LogitsProcessorList from transformers import GPT2Config, GPT2PreTrainedModel, LogitsProcessorList
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
from transformers.utils.model_parallel_utils import get_device_map, assert_device_map from transformers.utils.model_parallel_utils import get_device_map, assert_device_map
from models.arch_util import AttentionBlock from tortoise_tts.models.arch_util import AttentionBlock
from utils.typical_sampling import TypicalLogitsWarper from tortoise_tts.utils.typical_sampling import TypicalLogitsWarper
def null_position_embeddings(range, dim): def null_position_embeddings(range, dim):

View File

@ -3,7 +3,7 @@ import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint from torch.utils.checkpoint import checkpoint
from models.arch_util import Upsample, Downsample, normalization, zero_module, AttentionBlock from tortoise_tts.models.arch_util import Upsample, Downsample, normalization, zero_module, AttentionBlock
class ResBlock(nn.Module): class ResBlock(nn.Module):

View File

@ -3,9 +3,9 @@ import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from torch import einsum from torch import einsum
from models.arch_util import CheckpointedXTransformerEncoder from tortoise_tts.models.arch_util import CheckpointedXTransformerEncoder
from models.transformer import Transformer from tortoise_tts.models.transformer import Transformer
from models.xtransformers import Encoder from tortoise_tts.models.xtransformers import Encoder
def exists(val): def exists(val):

View File

@ -4,8 +4,8 @@ import torch.nn.functional as F
from torch import einsum from torch import einsum
from torch.utils.checkpoint import checkpoint from torch.utils.checkpoint import checkpoint
from models.arch_util import AttentionBlock from tortoise_tts.models.arch_util import AttentionBlock
from models.xtransformers import ContinuousTransformerWrapper, Encoder from tortoise_tts.models.xtransformers import ContinuousTransformerWrapper, Encoder
def exists(val): def exists(val):

View File

@ -7,7 +7,7 @@ import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from torch import autocast from torch import autocast
from models.arch_util import normalization, AttentionBlock from tortoise_tts.models.arch_util import normalization, AttentionBlock
def is_latent(t): def is_latent(t):

5
tortoise_tts/results/.gitattributes vendored Normal file
View File

@ -0,0 +1,5 @@
favorite_riding_hood.mp3 filter=lfs diff=lfs merge=lfs -text
favorites filter=lfs diff=lfs merge=lfs -text
riding_hood filter=lfs diff=lfs merge=lfs -text
tacotron_comparison filter=lfs diff=lfs merge=lfs -text
various filter=lfs diff=lfs merge=lfs -text

View File

@ -6,7 +6,7 @@ import torchaudio
import numpy as np import numpy as np
from scipy.io.wavfile import read from scipy.io.wavfile import read
from utils.stft import STFT from tortoise_tts.utils.stft import STFT
def load_wav_to_torch(full_path): def load_wav_to_torch(full_path):

View File

@ -3,6 +3,7 @@ import re
import inflect import inflect
import torch import torch
from tokenizers import Tokenizer from tokenizers import Tokenizer
from pathlib import Path
# Regular expression matching whitespace: # Regular expression matching whitespace:
@ -165,6 +166,8 @@ def lev_distance(s1, s2):
class VoiceBpeTokenizer: class VoiceBpeTokenizer:
def __init__(self, vocab_file='data/tokenizer.json'): def __init__(self, vocab_file='data/tokenizer.json'):
vocab_file = str(Path(__file__).parent.parent / Path(vocab_file))
print(vocab_file)
if vocab_file is not None: if vocab_file is not None:
self.tokenizer = Tokenizer.from_file(vocab_file) self.tokenizer = Tokenizer.from_file(vocab_file)