forked from mrq/tortoise-tts
added BigVGAN in place of default vocoder (credit to https://github.com/deviandice/tortoise-tts-BigVGAN)
This commit is contained in:
parent
a9de016230
commit
aca32a71f7
|
@ -5,6 +5,7 @@ import gc
|
||||||
|
|
||||||
from time import time
|
from time import time
|
||||||
from urllib import request
|
from urllib import request
|
||||||
|
from urllib.request import ProxyHandler, build_opener, install_opener
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
|
@ -21,6 +22,8 @@ from tortoise.models.clvp import CLVP
|
||||||
from tortoise.models.cvvp import CVVP
|
from tortoise.models.cvvp import CVVP
|
||||||
from tortoise.models.random_latent_generator import RandomLatentConverter
|
from tortoise.models.random_latent_generator import RandomLatentConverter
|
||||||
from tortoise.models.vocoder import UnivNetGenerator
|
from tortoise.models.vocoder import UnivNetGenerator
|
||||||
|
from tortoise.models.bigvgan import BigVGAN
|
||||||
|
|
||||||
from tortoise.utils.audio import wav_to_univnet_mel, denormalize_tacotron_mel
|
from tortoise.utils.audio import wav_to_univnet_mel, denormalize_tacotron_mel
|
||||||
from tortoise.utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
|
from tortoise.utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
|
||||||
from tortoise.utils.tokenizer import VoiceBpeTokenizer
|
from tortoise.utils.tokenizer import VoiceBpeTokenizer
|
||||||
|
@ -40,6 +43,7 @@ MODELS = {
|
||||||
'vocoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/vocoder.pth',
|
'vocoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/vocoder.pth',
|
||||||
'rlg_auto.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_auto.pth',
|
'rlg_auto.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_auto.pth',
|
||||||
'rlg_diffuser.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_diffuser.pth',
|
'rlg_diffuser.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_diffuser.pth',
|
||||||
|
'bigvgan_base_24khz_100band.pth': 'https://cdn.ecker.tech/models/bigvgan_base_24khz_100band.pth',
|
||||||
}
|
}
|
||||||
|
|
||||||
def hash_file(path, algo="md5", buffer_size=0):
|
def hash_file(path, algo="md5", buffer_size=0):
|
||||||
|
@ -110,6 +114,11 @@ def download_models(specific_models=None):
|
||||||
if os.path.exists(model_path):
|
if os.path.exists(model_path):
|
||||||
continue
|
continue
|
||||||
print(f'Downloading {model_name} from {url}...')
|
print(f'Downloading {model_name} from {url}...')
|
||||||
|
|
||||||
|
proxy = ProxyHandler({})
|
||||||
|
opener = build_opener(proxy)
|
||||||
|
opener.addheaders = [('User-Agent','mrq/AI-Voice-Cloning')]
|
||||||
|
install_opener(opener)
|
||||||
request.urlretrieve(url, model_path, show_progress)
|
request.urlretrieve(url, model_path, show_progress)
|
||||||
print('Done.')
|
print('Done.')
|
||||||
|
|
||||||
|
@ -227,12 +236,19 @@ def classify_audio_clip(clip):
|
||||||
results = F.softmax(classifier(clip), dim=-1)
|
results = F.softmax(classifier(clip), dim=-1)
|
||||||
return results[0][0]
|
return results[0][0]
|
||||||
|
|
||||||
|
def load_checkpoint(filepath, device):
|
||||||
|
assert os.path.isfile(filepath)
|
||||||
|
print("Loading '{}'".format(filepath))
|
||||||
|
checkpoint_dict = torch.load(filepath, map_location=device)
|
||||||
|
print("Complete.")
|
||||||
|
return checkpoint_dict
|
||||||
|
|
||||||
class TextToSpeech:
|
class TextToSpeech:
|
||||||
"""
|
"""
|
||||||
Main entry point into Tortoise.
|
Main entry point into Tortoise.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, autoregressive_batch_size=None, models_dir=MODELS_DIR, enable_redaction=True, device=None, minor_optimizations=True, input_sample_rate=22050, output_sample_rate=24000, autoregressive_model_path=None):
|
def __init__(self, autoregressive_batch_size=None, models_dir=MODELS_DIR, enable_redaction=True, device=None, minor_optimizations=True, input_sample_rate=22050, output_sample_rate=24000, autoregressive_model_path=None, use_bigvgan=True):
|
||||||
"""
|
"""
|
||||||
Constructor
|
Constructor
|
||||||
:param autoregressive_batch_size: Specifies how many samples to generate per batch. Lower this if you are seeing
|
:param autoregressive_batch_size: Specifies how many samples to generate per batch. Lower this if you are seeing
|
||||||
|
@ -295,6 +311,11 @@ class TextToSpeech:
|
||||||
self.clvp.load_state_dict(torch.load(get_model_path('clvp2.pth', models_dir)))
|
self.clvp.load_state_dict(torch.load(get_model_path('clvp2.pth', models_dir)))
|
||||||
self.cvvp = None # CVVP model is only loaded if used.
|
self.cvvp = None # CVVP model is only loaded if used.
|
||||||
|
|
||||||
|
if use_bigvgan:
|
||||||
|
self.vocoder = BigVGAN().cpu()
|
||||||
|
state_dict_bigvgan = load_checkpoint(get_model_path('bigvgan_base_24khz_100band.pth', models_dir), self.device)
|
||||||
|
self.vocoder.load_state_dict(state_dict_bigvgan['generator'])
|
||||||
|
else:
|
||||||
self.vocoder = UnivNetGenerator().cpu()
|
self.vocoder = UnivNetGenerator().cpu()
|
||||||
self.vocoder.load_state_dict(torch.load(get_model_path('vocoder.pth', models_dir), map_location=torch.device('cpu'))['model_g'])
|
self.vocoder.load_state_dict(torch.load(get_model_path('vocoder.pth', models_dir), map_location=torch.device('cpu'))['model_g'])
|
||||||
self.vocoder.eval(inference=True)
|
self.vocoder.eval(inference=True)
|
||||||
|
|
120
tortoise/models/activations.py
Normal file
120
tortoise/models/activations.py
Normal file
|
@ -0,0 +1,120 @@
|
||||||
|
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
|
||||||
|
# LICENSE is in incl_licenses directory.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn, sin, pow
|
||||||
|
from torch.nn import Parameter
|
||||||
|
|
||||||
|
|
||||||
|
class Snake(nn.Module):
|
||||||
|
'''
|
||||||
|
Implementation of a sine-based periodic activation function
|
||||||
|
Shape:
|
||||||
|
- Input: (B, C, T)
|
||||||
|
- Output: (B, C, T), same shape as the input
|
||||||
|
Parameters:
|
||||||
|
- alpha - trainable parameter
|
||||||
|
References:
|
||||||
|
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
||||||
|
https://arxiv.org/abs/2006.08195
|
||||||
|
Examples:
|
||||||
|
>>> a1 = snake(256)
|
||||||
|
>>> x = torch.randn(256)
|
||||||
|
>>> x = a1(x)
|
||||||
|
'''
|
||||||
|
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
||||||
|
'''
|
||||||
|
Initialization.
|
||||||
|
INPUT:
|
||||||
|
- in_features: shape of the input
|
||||||
|
- alpha: trainable parameter
|
||||||
|
alpha is initialized to 1 by default, higher values = higher-frequency.
|
||||||
|
alpha will be trained along with the rest of your model.
|
||||||
|
'''
|
||||||
|
super(Snake, self).__init__()
|
||||||
|
self.in_features = in_features
|
||||||
|
|
||||||
|
# initialize alpha
|
||||||
|
self.alpha_logscale = alpha_logscale
|
||||||
|
if self.alpha_logscale: # log scale alphas initialized to zeros
|
||||||
|
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
||||||
|
else: # linear scale alphas initialized to ones
|
||||||
|
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
||||||
|
|
||||||
|
self.alpha.requires_grad = alpha_trainable
|
||||||
|
|
||||||
|
self.no_div_by_zero = 0.000000001
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
'''
|
||||||
|
Forward pass of the function.
|
||||||
|
Applies the function to the input elementwise.
|
||||||
|
Snake ∶= x + 1/a * sin^2 (xa)
|
||||||
|
'''
|
||||||
|
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
||||||
|
if self.alpha_logscale:
|
||||||
|
alpha = torch.exp(alpha)
|
||||||
|
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class SnakeBeta(nn.Module):
|
||||||
|
'''
|
||||||
|
A modified Snake function which uses separate parameters for the magnitude of the periodic components
|
||||||
|
Shape:
|
||||||
|
- Input: (B, C, T)
|
||||||
|
- Output: (B, C, T), same shape as the input
|
||||||
|
Parameters:
|
||||||
|
- alpha - trainable parameter that controls frequency
|
||||||
|
- beta - trainable parameter that controls magnitude
|
||||||
|
References:
|
||||||
|
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
||||||
|
https://arxiv.org/abs/2006.08195
|
||||||
|
Examples:
|
||||||
|
>>> a1 = snakebeta(256)
|
||||||
|
>>> x = torch.randn(256)
|
||||||
|
>>> x = a1(x)
|
||||||
|
'''
|
||||||
|
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
||||||
|
'''
|
||||||
|
Initialization.
|
||||||
|
INPUT:
|
||||||
|
- in_features: shape of the input
|
||||||
|
- alpha - trainable parameter that controls frequency
|
||||||
|
- beta - trainable parameter that controls magnitude
|
||||||
|
alpha is initialized to 1 by default, higher values = higher-frequency.
|
||||||
|
beta is initialized to 1 by default, higher values = higher-magnitude.
|
||||||
|
alpha will be trained along with the rest of your model.
|
||||||
|
'''
|
||||||
|
super(SnakeBeta, self).__init__()
|
||||||
|
self.in_features = in_features
|
||||||
|
|
||||||
|
# initialize alpha
|
||||||
|
self.alpha_logscale = alpha_logscale
|
||||||
|
if self.alpha_logscale: # log scale alphas initialized to zeros
|
||||||
|
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
||||||
|
self.beta = Parameter(torch.zeros(in_features) * alpha)
|
||||||
|
else: # linear scale alphas initialized to ones
|
||||||
|
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
||||||
|
self.beta = Parameter(torch.ones(in_features) * alpha)
|
||||||
|
|
||||||
|
self.alpha.requires_grad = alpha_trainable
|
||||||
|
self.beta.requires_grad = alpha_trainable
|
||||||
|
|
||||||
|
self.no_div_by_zero = 0.000000001
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
'''
|
||||||
|
Forward pass of the function.
|
||||||
|
Applies the function to the input elementwise.
|
||||||
|
SnakeBeta ∶= x + 1/b * sin^2 (xa)
|
||||||
|
'''
|
||||||
|
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
||||||
|
beta = self.beta.unsqueeze(0).unsqueeze(-1)
|
||||||
|
if self.alpha_logscale:
|
||||||
|
alpha = torch.exp(alpha)
|
||||||
|
beta = torch.exp(beta)
|
||||||
|
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
||||||
|
|
||||||
|
return x
|
6
tortoise/models/alias_free_torch/__init__.py
Normal file
6
tortoise/models/alias_free_torch/__init__.py
Normal file
|
@ -0,0 +1,6 @@
|
||||||
|
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||||||
|
# LICENSE is in incl_licenses directory.
|
||||||
|
|
||||||
|
from .filter import *
|
||||||
|
from .resample import *
|
||||||
|
from .act import *
|
28
tortoise/models/alias_free_torch/act.py
Normal file
28
tortoise/models/alias_free_torch/act.py
Normal file
|
@ -0,0 +1,28 @@
|
||||||
|
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||||||
|
# LICENSE is in incl_licenses directory.
|
||||||
|
|
||||||
|
import torch.nn as nn
|
||||||
|
from .resample import UpSample1d, DownSample1d
|
||||||
|
|
||||||
|
|
||||||
|
class Activation1d(nn.Module):
|
||||||
|
def __init__(self,
|
||||||
|
activation,
|
||||||
|
up_ratio: int = 2,
|
||||||
|
down_ratio: int = 2,
|
||||||
|
up_kernel_size: int = 12,
|
||||||
|
down_kernel_size: int = 12):
|
||||||
|
super().__init__()
|
||||||
|
self.up_ratio = up_ratio
|
||||||
|
self.down_ratio = down_ratio
|
||||||
|
self.act = activation
|
||||||
|
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
||||||
|
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
||||||
|
|
||||||
|
# x: [B,C,T]
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.upsample(x)
|
||||||
|
x = self.act(x)
|
||||||
|
x = self.downsample(x)
|
||||||
|
|
||||||
|
return x
|
95
tortoise/models/alias_free_torch/filter.py
Normal file
95
tortoise/models/alias_free_torch/filter.py
Normal file
|
@ -0,0 +1,95 @@
|
||||||
|
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||||||
|
# LICENSE is in incl_licenses directory.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import math
|
||||||
|
|
||||||
|
if 'sinc' in dir(torch):
|
||||||
|
sinc = torch.sinc
|
||||||
|
else:
|
||||||
|
# This code is adopted from adefossez's julius.core.sinc under the MIT License
|
||||||
|
# https://adefossez.github.io/julius/julius/core.html
|
||||||
|
# LICENSE is in incl_licenses directory.
|
||||||
|
def sinc(x: torch.Tensor):
|
||||||
|
"""
|
||||||
|
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
|
||||||
|
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
|
||||||
|
"""
|
||||||
|
return torch.where(x == 0,
|
||||||
|
torch.tensor(1., device=x.device, dtype=x.dtype),
|
||||||
|
torch.sin(math.pi * x) / math.pi / x)
|
||||||
|
|
||||||
|
|
||||||
|
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
|
||||||
|
# https://adefossez.github.io/julius/julius/lowpass.html
|
||||||
|
# LICENSE is in incl_licenses directory.
|
||||||
|
def kaiser_sinc_filter1d(cutoff, half_width, kernel_size): # return filter [1,1,kernel_size]
|
||||||
|
even = (kernel_size % 2 == 0)
|
||||||
|
half_size = kernel_size // 2
|
||||||
|
|
||||||
|
#For kaiser window
|
||||||
|
delta_f = 4 * half_width
|
||||||
|
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
|
||||||
|
if A > 50.:
|
||||||
|
beta = 0.1102 * (A - 8.7)
|
||||||
|
elif A >= 21.:
|
||||||
|
beta = 0.5842 * (A - 21)**0.4 + 0.07886 * (A - 21.)
|
||||||
|
else:
|
||||||
|
beta = 0.
|
||||||
|
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
|
||||||
|
|
||||||
|
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
|
||||||
|
if even:
|
||||||
|
time = (torch.arange(-half_size, half_size) + 0.5)
|
||||||
|
else:
|
||||||
|
time = torch.arange(kernel_size) - half_size
|
||||||
|
if cutoff == 0:
|
||||||
|
filter_ = torch.zeros_like(time)
|
||||||
|
else:
|
||||||
|
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
|
||||||
|
# Normalize filter to have sum = 1, otherwise we will have a small leakage
|
||||||
|
# of the constant component in the input signal.
|
||||||
|
filter_ /= filter_.sum()
|
||||||
|
filter = filter_.view(1, 1, kernel_size)
|
||||||
|
|
||||||
|
return filter
|
||||||
|
|
||||||
|
|
||||||
|
class LowPassFilter1d(nn.Module):
|
||||||
|
def __init__(self,
|
||||||
|
cutoff=0.5,
|
||||||
|
half_width=0.6,
|
||||||
|
stride: int = 1,
|
||||||
|
padding: bool = True,
|
||||||
|
padding_mode: str = 'replicate',
|
||||||
|
kernel_size: int = 12):
|
||||||
|
# kernel_size should be even number for stylegan3 setup,
|
||||||
|
# in this implementation, odd number is also possible.
|
||||||
|
super().__init__()
|
||||||
|
if cutoff < -0.:
|
||||||
|
raise ValueError("Minimum cutoff must be larger than zero.")
|
||||||
|
if cutoff > 0.5:
|
||||||
|
raise ValueError("A cutoff above 0.5 does not make sense.")
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.even = (kernel_size % 2 == 0)
|
||||||
|
self.pad_left = kernel_size // 2 - int(self.even)
|
||||||
|
self.pad_right = kernel_size // 2
|
||||||
|
self.stride = stride
|
||||||
|
self.padding = padding
|
||||||
|
self.padding_mode = padding_mode
|
||||||
|
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
|
||||||
|
self.register_buffer("filter", filter)
|
||||||
|
|
||||||
|
#input [B, C, T]
|
||||||
|
def forward(self, x):
|
||||||
|
_, C, _ = x.shape
|
||||||
|
|
||||||
|
if self.padding:
|
||||||
|
x = F.pad(x, (self.pad_left, self.pad_right),
|
||||||
|
mode=self.padding_mode)
|
||||||
|
out = F.conv1d(x, self.filter.expand(C, -1, -1),
|
||||||
|
stride=self.stride, groups=C)
|
||||||
|
|
||||||
|
return out
|
49
tortoise/models/alias_free_torch/resample.py
Normal file
49
tortoise/models/alias_free_torch/resample.py
Normal file
|
@ -0,0 +1,49 @@
|
||||||
|
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
||||||
|
# LICENSE is in incl_licenses directory.
|
||||||
|
|
||||||
|
import torch.nn as nn
|
||||||
|
from torch.nn import functional as F
|
||||||
|
from .filter import LowPassFilter1d
|
||||||
|
from .filter import kaiser_sinc_filter1d
|
||||||
|
|
||||||
|
|
||||||
|
class UpSample1d(nn.Module):
|
||||||
|
def __init__(self, ratio=2, kernel_size=None):
|
||||||
|
super().__init__()
|
||||||
|
self.ratio = ratio
|
||||||
|
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
||||||
|
self.stride = ratio
|
||||||
|
self.pad = self.kernel_size // ratio - 1
|
||||||
|
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
|
||||||
|
self.pad_right = self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
|
||||||
|
filter = kaiser_sinc_filter1d(cutoff=0.5 / ratio,
|
||||||
|
half_width=0.6 / ratio,
|
||||||
|
kernel_size=self.kernel_size)
|
||||||
|
self.register_buffer("filter", filter)
|
||||||
|
|
||||||
|
# x: [B, C, T]
|
||||||
|
def forward(self, x):
|
||||||
|
_, C, _ = x.shape
|
||||||
|
|
||||||
|
x = F.pad(x, (self.pad, self.pad), mode='replicate')
|
||||||
|
x = self.ratio * F.conv_transpose1d(
|
||||||
|
x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
|
||||||
|
x = x[..., self.pad_left:-self.pad_right]
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class DownSample1d(nn.Module):
|
||||||
|
def __init__(self, ratio=2, kernel_size=None):
|
||||||
|
super().__init__()
|
||||||
|
self.ratio = ratio
|
||||||
|
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
||||||
|
self.lowpass = LowPassFilter1d(cutoff=0.5 / ratio,
|
||||||
|
half_width=0.6 / ratio,
|
||||||
|
stride=ratio,
|
||||||
|
kernel_size=self.kernel_size)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
xx = self.lowpass(x)
|
||||||
|
|
||||||
|
return xx
|
472
tortoise/models/bigvgan.py
Normal file
472
tortoise/models/bigvgan.py
Normal file
|
@ -0,0 +1,472 @@
|
||||||
|
# Copyright (c) 2022 NVIDIA CORPORATION.
|
||||||
|
# Licensed under the MIT license.
|
||||||
|
|
||||||
|
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
||||||
|
# LICENSE is in incl_licenses directory.
|
||||||
|
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import torch, torch.utils.data
|
||||||
|
import tortoise.models.activations as activations
|
||||||
|
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
||||||
|
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
||||||
|
from tortoise.models.alias_free_torch import *
|
||||||
|
from librosa.filters import mel as librosa_mel_fn
|
||||||
|
|
||||||
|
LRELU_SLOPE = 0.1
|
||||||
|
|
||||||
|
|
||||||
|
class AMPBlock1(torch.nn.Module):
|
||||||
|
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None):
|
||||||
|
super(AMPBlock1, self).__init__()
|
||||||
|
self.h = h
|
||||||
|
|
||||||
|
self.convs1 = nn.ModuleList([
|
||||||
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
||||||
|
padding=get_padding(kernel_size, dilation[0]))),
|
||||||
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
||||||
|
padding=get_padding(kernel_size, dilation[1]))),
|
||||||
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
||||||
|
padding=get_padding(kernel_size, dilation[2])))
|
||||||
|
])
|
||||||
|
self.convs1.apply(init_weights)
|
||||||
|
|
||||||
|
self.convs2 = nn.ModuleList([
|
||||||
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||||
|
padding=get_padding(kernel_size, 1))),
|
||||||
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||||
|
padding=get_padding(kernel_size, 1))),
|
||||||
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||||
|
padding=get_padding(kernel_size, 1)))
|
||||||
|
])
|
||||||
|
self.convs2.apply(init_weights)
|
||||||
|
|
||||||
|
self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers
|
||||||
|
|
||||||
|
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
|
||||||
|
self.activations = nn.ModuleList([
|
||||||
|
Activation1d(
|
||||||
|
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
|
||||||
|
for _ in range(self.num_layers)
|
||||||
|
])
|
||||||
|
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
|
||||||
|
self.activations = nn.ModuleList([
|
||||||
|
Activation1d(
|
||||||
|
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
|
||||||
|
for _ in range(self.num_layers)
|
||||||
|
])
|
||||||
|
else:
|
||||||
|
raise NotImplementedError(
|
||||||
|
"activation incorrectly specified. check the config file and look for 'activation'.")
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
acts1, acts2 = self.activations[::2], self.activations[1::2]
|
||||||
|
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
|
||||||
|
xt = a1(x)
|
||||||
|
xt = c1(xt)
|
||||||
|
xt = a2(xt)
|
||||||
|
xt = c2(xt)
|
||||||
|
x = xt + x
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
def remove_weight_norm(self):
|
||||||
|
for l in self.convs1:
|
||||||
|
remove_weight_norm(l)
|
||||||
|
for l in self.convs2:
|
||||||
|
remove_weight_norm(l)
|
||||||
|
|
||||||
|
|
||||||
|
class AMPBlock2(torch.nn.Module):
|
||||||
|
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None):
|
||||||
|
super(AMPBlock2, self).__init__()
|
||||||
|
self.h = h
|
||||||
|
|
||||||
|
self.convs = nn.ModuleList([
|
||||||
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
||||||
|
padding=get_padding(kernel_size, dilation[0]))),
|
||||||
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
||||||
|
padding=get_padding(kernel_size, dilation[1])))
|
||||||
|
])
|
||||||
|
self.convs.apply(init_weights)
|
||||||
|
|
||||||
|
self.num_layers = len(self.convs) # total number of conv layers
|
||||||
|
|
||||||
|
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
|
||||||
|
self.activations = nn.ModuleList([
|
||||||
|
Activation1d(
|
||||||
|
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
|
||||||
|
for _ in range(self.num_layers)
|
||||||
|
])
|
||||||
|
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
|
||||||
|
self.activations = nn.ModuleList([
|
||||||
|
Activation1d(
|
||||||
|
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
|
||||||
|
for _ in range(self.num_layers)
|
||||||
|
])
|
||||||
|
else:
|
||||||
|
raise NotImplementedError(
|
||||||
|
"activation incorrectly specified. check the config file and look for 'activation'.")
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
for c, a in zip(self.convs, self.activations):
|
||||||
|
xt = a(x)
|
||||||
|
xt = c(xt)
|
||||||
|
x = xt + x
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
def remove_weight_norm(self):
|
||||||
|
for l in self.convs:
|
||||||
|
remove_weight_norm(l)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class AttrDict(dict):
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
super(AttrDict, self).__init__(*args, **kwargs)
|
||||||
|
self.__dict__ = self
|
||||||
|
|
||||||
|
class BigVGAN(nn.Module):
|
||||||
|
# this is our main BigVGAN model. Applies anti-aliased periodic activation for resblocks.
|
||||||
|
def __init__(self):
|
||||||
|
super(BigVGAN, self).__init__()
|
||||||
|
|
||||||
|
with open(os.path.join(os.path.dirname(__file__), 'config.json'), 'r') as f:
|
||||||
|
data = f.read()
|
||||||
|
|
||||||
|
global h
|
||||||
|
jsonConfig = json.loads(data)
|
||||||
|
h = AttrDict(jsonConfig)
|
||||||
|
|
||||||
|
self.mel_channel = h.num_mels
|
||||||
|
self.noise_dim = h.n_fft
|
||||||
|
self.hop_length = h.hop_size
|
||||||
|
self.num_kernels = len(h.resblock_kernel_sizes)
|
||||||
|
self.num_upsamples = len(h.upsample_rates)
|
||||||
|
|
||||||
|
# pre conv
|
||||||
|
self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3))
|
||||||
|
|
||||||
|
# define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
|
||||||
|
resblock = AMPBlock1 if h.resblock == '1' else AMPBlock2
|
||||||
|
|
||||||
|
# transposed conv-based upsamplers. does not apply anti-aliasing
|
||||||
|
self.ups = nn.ModuleList()
|
||||||
|
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
||||||
|
self.ups.append(nn.ModuleList([
|
||||||
|
weight_norm(ConvTranspose1d(h.upsample_initial_channel // (2 ** i),
|
||||||
|
h.upsample_initial_channel // (2 ** (i + 1)),
|
||||||
|
k, u, padding=(k - u) // 2))
|
||||||
|
]))
|
||||||
|
|
||||||
|
# residual blocks using anti-aliased multi-periodicity composition modules (AMP)
|
||||||
|
self.resblocks = nn.ModuleList()
|
||||||
|
for i in range(len(self.ups)):
|
||||||
|
ch = h.upsample_initial_channel // (2 ** (i + 1))
|
||||||
|
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
|
||||||
|
self.resblocks.append(resblock(h, ch, k, d, activation=h.activation))
|
||||||
|
|
||||||
|
# post conv
|
||||||
|
if h.activation == "snake": # periodic nonlinearity with snake function and anti-aliasing
|
||||||
|
activation_post = activations.Snake(ch, alpha_logscale=h.snake_logscale)
|
||||||
|
self.activation_post = Activation1d(activation=activation_post)
|
||||||
|
elif h.activation == "snakebeta": # periodic nonlinearity with snakebeta function and anti-aliasing
|
||||||
|
activation_post = activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale)
|
||||||
|
self.activation_post = Activation1d(activation=activation_post)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError(
|
||||||
|
"activation incorrectly specified. check the config file and look for 'activation'.")
|
||||||
|
|
||||||
|
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
||||||
|
|
||||||
|
# weight initialization
|
||||||
|
for i in range(len(self.ups)):
|
||||||
|
self.ups[i].apply(init_weights)
|
||||||
|
self.conv_post.apply(init_weights)
|
||||||
|
|
||||||
|
def forward(self,x, c):
|
||||||
|
# pre conv
|
||||||
|
x = self.conv_pre(x)
|
||||||
|
|
||||||
|
for i in range(self.num_upsamples):
|
||||||
|
# upsampling
|
||||||
|
for i_up in range(len(self.ups[i])):
|
||||||
|
x = self.ups[i][i_up](x)
|
||||||
|
# AMP blocks
|
||||||
|
xs = None
|
||||||
|
for j in range(self.num_kernels):
|
||||||
|
if xs is None:
|
||||||
|
xs = self.resblocks[i * self.num_kernels + j](x)
|
||||||
|
else:
|
||||||
|
xs += self.resblocks[i * self.num_kernels + j](x)
|
||||||
|
x = xs / self.num_kernels
|
||||||
|
|
||||||
|
# post conv
|
||||||
|
x = self.activation_post(x)
|
||||||
|
x = self.conv_post(x)
|
||||||
|
x = torch.tanh(x)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
def remove_weight_norm(self):
|
||||||
|
print('Removing weight norm...')
|
||||||
|
for l in self.ups:
|
||||||
|
for l_i in l:
|
||||||
|
remove_weight_norm(l_i)
|
||||||
|
for l in self.resblocks:
|
||||||
|
l.remove_weight_norm()
|
||||||
|
remove_weight_norm(self.conv_pre)
|
||||||
|
remove_weight_norm(self.conv_post)
|
||||||
|
|
||||||
|
def inference(self, c, z=None):
|
||||||
|
# pad input mel with zeros to cut artifact
|
||||||
|
# see https://github.com/seungwonpark/melgan/issues/8
|
||||||
|
zero = torch.full((c.shape[0], h.num_mels, 10), -11.5129).to(c.device)
|
||||||
|
mel = torch.cat((c, zero), dim=2)
|
||||||
|
|
||||||
|
if z is None:
|
||||||
|
z = torch.randn(c.shape[0], self.noise_dim, mel.size(2)).to(mel.device)
|
||||||
|
|
||||||
|
audio = self.forward(mel, z)
|
||||||
|
audio = audio[:, :, :-(self.hop_length * 10)]
|
||||||
|
audio = audio.clamp(min=-1, max=1)
|
||||||
|
return audio
|
||||||
|
|
||||||
|
def eval(self, inference=False):
|
||||||
|
super(BigVGAN, self).eval()
|
||||||
|
# don't remove weight norm while validation in training loop
|
||||||
|
if inference:
|
||||||
|
self.remove_weight_norm()
|
||||||
|
|
||||||
|
|
||||||
|
class DiscriminatorP(nn.Module):
|
||||||
|
def __init__(self, h, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
||||||
|
super(DiscriminatorP, self).__init__()
|
||||||
|
self.period = period
|
||||||
|
self.d_mult = h.discriminator_channel_mult
|
||||||
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||||
|
self.convs = nn.ModuleList([
|
||||||
|
norm_f(Conv2d(1, int(32 * self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
||||||
|
norm_f(Conv2d(int(32 * self.d_mult), int(128 * self.d_mult), (kernel_size, 1), (stride, 1),
|
||||||
|
padding=(get_padding(5, 1), 0))),
|
||||||
|
norm_f(Conv2d(int(128 * self.d_mult), int(512 * self.d_mult), (kernel_size, 1), (stride, 1),
|
||||||
|
padding=(get_padding(5, 1), 0))),
|
||||||
|
norm_f(Conv2d(int(512 * self.d_mult), int(1024 * self.d_mult), (kernel_size, 1), (stride, 1),
|
||||||
|
padding=(get_padding(5, 1), 0))),
|
||||||
|
norm_f(Conv2d(int(1024 * self.d_mult), int(1024 * self.d_mult), (kernel_size, 1), 1, padding=(2, 0))),
|
||||||
|
])
|
||||||
|
self.conv_post = norm_f(Conv2d(int(1024 * self.d_mult), 1, (3, 1), 1, padding=(1, 0)))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
fmap = []
|
||||||
|
|
||||||
|
# 1d to 2d
|
||||||
|
b, c, t = x.shape
|
||||||
|
if t % self.period != 0: # pad first
|
||||||
|
n_pad = self.period - (t % self.period)
|
||||||
|
x = F.pad(x, (0, n_pad), "reflect")
|
||||||
|
t = t + n_pad
|
||||||
|
x = x.view(b, c, t // self.period, self.period)
|
||||||
|
|
||||||
|
for l in self.convs:
|
||||||
|
x = l(x)
|
||||||
|
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||||
|
fmap.append(x)
|
||||||
|
x = self.conv_post(x)
|
||||||
|
fmap.append(x)
|
||||||
|
x = torch.flatten(x, 1, -1)
|
||||||
|
|
||||||
|
return x, fmap
|
||||||
|
|
||||||
|
|
||||||
|
class MultiPeriodDiscriminator(nn.Module):
|
||||||
|
def __init__(self, h):
|
||||||
|
super(MultiPeriodDiscriminator, self).__init__()
|
||||||
|
self.mpd_reshapes = h.mpd_reshapes
|
||||||
|
print("mpd_reshapes: {}".format(self.mpd_reshapes))
|
||||||
|
discriminators = [DiscriminatorP(h, rs, use_spectral_norm=h.use_spectral_norm) for rs in self.mpd_reshapes]
|
||||||
|
self.discriminators = nn.ModuleList(discriminators)
|
||||||
|
|
||||||
|
def forward(self, y, y_hat):
|
||||||
|
y_d_rs = []
|
||||||
|
y_d_gs = []
|
||||||
|
fmap_rs = []
|
||||||
|
fmap_gs = []
|
||||||
|
for i, d in enumerate(self.discriminators):
|
||||||
|
y_d_r, fmap_r = d(y)
|
||||||
|
y_d_g, fmap_g = d(y_hat)
|
||||||
|
y_d_rs.append(y_d_r)
|
||||||
|
fmap_rs.append(fmap_r)
|
||||||
|
y_d_gs.append(y_d_g)
|
||||||
|
fmap_gs.append(fmap_g)
|
||||||
|
|
||||||
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||||
|
|
||||||
|
|
||||||
|
class DiscriminatorR(nn.Module):
|
||||||
|
def __init__(self, cfg, resolution):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.resolution = resolution
|
||||||
|
assert len(self.resolution) == 3, \
|
||||||
|
"MRD layer requires list with len=3, got {}".format(self.resolution)
|
||||||
|
self.lrelu_slope = LRELU_SLOPE
|
||||||
|
|
||||||
|
norm_f = weight_norm if cfg.use_spectral_norm == False else spectral_norm
|
||||||
|
if hasattr(cfg, "mrd_use_spectral_norm"):
|
||||||
|
print("INFO: overriding MRD use_spectral_norm as {}".format(cfg.mrd_use_spectral_norm))
|
||||||
|
norm_f = weight_norm if cfg.mrd_use_spectral_norm == False else spectral_norm
|
||||||
|
self.d_mult = cfg.discriminator_channel_mult
|
||||||
|
if hasattr(cfg, "mrd_channel_mult"):
|
||||||
|
print("INFO: overriding mrd channel multiplier as {}".format(cfg.mrd_channel_mult))
|
||||||
|
self.d_mult = cfg.mrd_channel_mult
|
||||||
|
|
||||||
|
self.convs = nn.ModuleList([
|
||||||
|
norm_f(nn.Conv2d(1, int(32 * self.d_mult), (3, 9), padding=(1, 4))),
|
||||||
|
norm_f(nn.Conv2d(int(32 * self.d_mult), int(32 * self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
|
||||||
|
norm_f(nn.Conv2d(int(32 * self.d_mult), int(32 * self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
|
||||||
|
norm_f(nn.Conv2d(int(32 * self.d_mult), int(32 * self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
|
||||||
|
norm_f(nn.Conv2d(int(32 * self.d_mult), int(32 * self.d_mult), (3, 3), padding=(1, 1))),
|
||||||
|
])
|
||||||
|
self.conv_post = norm_f(nn.Conv2d(int(32 * self.d_mult), 1, (3, 3), padding=(1, 1)))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
fmap = []
|
||||||
|
|
||||||
|
x = self.spectrogram(x)
|
||||||
|
x = x.unsqueeze(1)
|
||||||
|
for l in self.convs:
|
||||||
|
x = l(x)
|
||||||
|
x = F.leaky_relu(x, self.lrelu_slope)
|
||||||
|
fmap.append(x)
|
||||||
|
x = self.conv_post(x)
|
||||||
|
fmap.append(x)
|
||||||
|
x = torch.flatten(x, 1, -1)
|
||||||
|
|
||||||
|
return x, fmap
|
||||||
|
|
||||||
|
def spectrogram(self, x):
|
||||||
|
n_fft, hop_length, win_length = self.resolution
|
||||||
|
x = F.pad(x, (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)), mode='reflect')
|
||||||
|
x = x.squeeze(1)
|
||||||
|
x = torch.stft(x, n_fft=n_fft, hop_length=hop_length, win_length=win_length, center=False, return_complex=True)
|
||||||
|
x = torch.view_as_real(x) # [B, F, TT, 2]
|
||||||
|
mag = torch.norm(x, p=2, dim=-1) # [B, F, TT]
|
||||||
|
|
||||||
|
return mag
|
||||||
|
|
||||||
|
|
||||||
|
class MultiResolutionDiscriminator(nn.Module):
|
||||||
|
def __init__(self, cfg, debug=False):
|
||||||
|
super().__init__()
|
||||||
|
self.resolutions = cfg.resolutions
|
||||||
|
assert len(self.resolutions) == 3, \
|
||||||
|
"MRD requires list of list with len=3, each element having a list with len=3. got {}". \
|
||||||
|
format(self.resolutions)
|
||||||
|
self.discriminators = nn.ModuleList(
|
||||||
|
[DiscriminatorR(cfg, resolution) for resolution in self.resolutions]
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, y, y_hat):
|
||||||
|
y_d_rs = []
|
||||||
|
y_d_gs = []
|
||||||
|
fmap_rs = []
|
||||||
|
fmap_gs = []
|
||||||
|
|
||||||
|
for i, d in enumerate(self.discriminators):
|
||||||
|
y_d_r, fmap_r = d(x=y)
|
||||||
|
y_d_g, fmap_g = d(x=y_hat)
|
||||||
|
y_d_rs.append(y_d_r)
|
||||||
|
fmap_rs.append(fmap_r)
|
||||||
|
y_d_gs.append(y_d_g)
|
||||||
|
fmap_gs.append(fmap_g)
|
||||||
|
|
||||||
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||||
|
|
||||||
|
def get_mel(x):
|
||||||
|
return mel_spectrogram(x, h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax)
|
||||||
|
|
||||||
|
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
||||||
|
if torch.min(y) < -1.:
|
||||||
|
print('min value is ', torch.min(y))
|
||||||
|
if torch.max(y) > 1.:
|
||||||
|
print('max value is ', torch.max(y))
|
||||||
|
|
||||||
|
global mel_basis, hann_window
|
||||||
|
if fmax not in mel_basis:
|
||||||
|
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
||||||
|
mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)
|
||||||
|
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
|
||||||
|
|
||||||
|
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
||||||
|
y = y.squeeze(1)
|
||||||
|
|
||||||
|
# complex tensor as default, then use view_as_real for future pytorch compatibility
|
||||||
|
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)],
|
||||||
|
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True)
|
||||||
|
spec = torch.view_as_real(spec)
|
||||||
|
spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9))
|
||||||
|
|
||||||
|
spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec)
|
||||||
|
spec = torch.nn.utils.spectral_normalize_torch(spec)
|
||||||
|
|
||||||
|
return spec
|
||||||
|
|
||||||
|
def feature_loss(fmap_r, fmap_g):
|
||||||
|
loss = 0
|
||||||
|
for dr, dg in zip(fmap_r, fmap_g):
|
||||||
|
for rl, gl in zip(dr, dg):
|
||||||
|
loss += torch.mean(torch.abs(rl - gl))
|
||||||
|
|
||||||
|
return loss * 2
|
||||||
|
|
||||||
|
|
||||||
|
def init_weights(m, mean=0.0, std=0.01):
|
||||||
|
classname = m.__class__.__name__
|
||||||
|
if classname.find("Conv") != -1:
|
||||||
|
m.weight.data.normal_(mean, std)
|
||||||
|
|
||||||
|
|
||||||
|
def get_padding(kernel_size, dilation=1):
|
||||||
|
return int((kernel_size * dilation - dilation) / 2)
|
||||||
|
|
||||||
|
|
||||||
|
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
||||||
|
loss = 0
|
||||||
|
r_losses = []
|
||||||
|
g_losses = []
|
||||||
|
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
||||||
|
r_loss = torch.mean((1 - dr) ** 2)
|
||||||
|
g_loss = torch.mean(dg ** 2)
|
||||||
|
loss += (r_loss + g_loss)
|
||||||
|
r_losses.append(r_loss.item())
|
||||||
|
g_losses.append(g_loss.item())
|
||||||
|
|
||||||
|
return loss, r_losses, g_losses
|
||||||
|
|
||||||
|
|
||||||
|
def generator_loss(disc_outputs):
|
||||||
|
loss = 0
|
||||||
|
gen_losses = []
|
||||||
|
for dg in disc_outputs:
|
||||||
|
l = torch.mean((1 - dg) ** 2)
|
||||||
|
gen_losses.append(l)
|
||||||
|
loss += l
|
||||||
|
|
||||||
|
return loss, gen_losses
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
model = BigVGAN()
|
||||||
|
|
||||||
|
c = torch.randn(3, 100, 10)
|
||||||
|
z = torch.randn(3, 64, 10)
|
||||||
|
print(c.shape)
|
||||||
|
|
||||||
|
y = model(c, z)
|
||||||
|
print(y.shape)
|
||||||
|
assert y.shape == torch.Size([3, 1, 2560])
|
||||||
|
|
||||||
|
pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||||||
|
print(pytorch_total_params)
|
46
tortoise/models/config.json
Normal file
46
tortoise/models/config.json
Normal file
|
@ -0,0 +1,46 @@
|
||||||
|
{
|
||||||
|
"resblock": "1",
|
||||||
|
"num_gpus": 0,
|
||||||
|
"batch_size": 32,
|
||||||
|
"learning_rate": 0.0001,
|
||||||
|
"adam_b1": 0.8,
|
||||||
|
"adam_b2": 0.99,
|
||||||
|
"lr_decay": 0.999,
|
||||||
|
"seed": 1234,
|
||||||
|
|
||||||
|
"upsample_rates": [8,8,2,2],
|
||||||
|
"upsample_kernel_sizes": [16,16,4,4],
|
||||||
|
"upsample_initial_channel": 512,
|
||||||
|
"resblock_kernel_sizes": [3,7,11],
|
||||||
|
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
||||||
|
|
||||||
|
"activation": "snakebeta",
|
||||||
|
"snake_logscale": true,
|
||||||
|
|
||||||
|
"discriminator": "mrd",
|
||||||
|
"resolutions": [[1024, 120, 600], [2048, 240, 1200], [512, 50, 240]],
|
||||||
|
"mpd_reshapes": [2, 3, 5, 7, 11],
|
||||||
|
"use_spectral_norm": false,
|
||||||
|
"discriminator_channel_mult": 1,
|
||||||
|
|
||||||
|
"segment_size": 8192,
|
||||||
|
"num_mels": 100,
|
||||||
|
"num_freq": 1025,
|
||||||
|
"n_fft": 1024,
|
||||||
|
"hop_size": 256,
|
||||||
|
"win_size": 1024,
|
||||||
|
|
||||||
|
"sampling_rate": 24000,
|
||||||
|
|
||||||
|
"fmin": 0,
|
||||||
|
"fmax": 12000,
|
||||||
|
"fmax_for_loss": null,
|
||||||
|
|
||||||
|
"num_workers": 4,
|
||||||
|
|
||||||
|
"dist_config": {
|
||||||
|
"dist_backend": "nccl",
|
||||||
|
"dist_url": "tcp://localhost:54321",
|
||||||
|
"world_size": 1
|
||||||
|
}
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user