moved (actually not working) setting to use BigVGAN to a dropdown to select between vocoders (for when slotting in future ones), and ability to load a new vocoder while TTS is loaded
This commit is contained in:
parent
e731b9ba84
commit
0f0b394445
59
src/utils.py
59
src/utils.py
|
@ -42,6 +42,8 @@ WHISPER_MODELS = ["tiny", "base", "small", "medium", "large", "large-v2"]
|
||||||
WHISPER_SPECIALIZED_MODELS = ["tiny.en", "base.en", "small.en", "medium.en"]
|
WHISPER_SPECIALIZED_MODELS = ["tiny.en", "base.en", "small.en", "medium.en"]
|
||||||
WHISPER_BACKENDS = ["openai/whisper", "lightmare/whispercpp", "m-bain/whisperx"]
|
WHISPER_BACKENDS = ["openai/whisper", "lightmare/whispercpp", "m-bain/whisperx"]
|
||||||
|
|
||||||
|
VOCODERS = ['univnet', 'bigvgan_base_24khz_100band'] #, 'bigvgan_24khz_100band']
|
||||||
|
|
||||||
EPOCH_SCHEDULE = [ 9, 18, 25, 33 ]
|
EPOCH_SCHEDULE = [ 9, 18, 25, 33 ]
|
||||||
|
|
||||||
args = None
|
args = None
|
||||||
|
@ -1539,7 +1541,7 @@ def setup_args():
|
||||||
'defer-tts-load': False,
|
'defer-tts-load': False,
|
||||||
'device-override': None,
|
'device-override': None,
|
||||||
'prune-nonfinal-outputs': True,
|
'prune-nonfinal-outputs': True,
|
||||||
'use-bigvgan-vocoder': True,
|
'vocoder-model': VOCODERS[-1],
|
||||||
'concurrency-count': 2,
|
'concurrency-count': 2,
|
||||||
'autocalculate-voice-chunk-duration-size': 0,
|
'autocalculate-voice-chunk-duration-size': 0,
|
||||||
'output-sample-rate': 44100,
|
'output-sample-rate': 44100,
|
||||||
|
@ -1576,7 +1578,7 @@ def setup_args():
|
||||||
parser.add_argument("--force-cpu-for-conditioning-latents", default=default_arguments['force-cpu-for-conditioning-latents'], action='store_true', help="Forces computing conditional latents to be done on the CPU (if you constantyl OOM on low chunk counts)")
|
parser.add_argument("--force-cpu-for-conditioning-latents", default=default_arguments['force-cpu-for-conditioning-latents'], action='store_true', help="Forces computing conditional latents to be done on the CPU (if you constantyl OOM on low chunk counts)")
|
||||||
parser.add_argument("--defer-tts-load", default=default_arguments['defer-tts-load'], action='store_true', help="Defers loading TTS model")
|
parser.add_argument("--defer-tts-load", default=default_arguments['defer-tts-load'], action='store_true', help="Defers loading TTS model")
|
||||||
parser.add_argument("--prune-nonfinal-outputs", default=default_arguments['prune-nonfinal-outputs'], action='store_true', help="Deletes non-final output files on completing a generation")
|
parser.add_argument("--prune-nonfinal-outputs", default=default_arguments['prune-nonfinal-outputs'], action='store_true', help="Deletes non-final output files on completing a generation")
|
||||||
parser.add_argument("--use-bigvgan-vocoder", default=default_arguments['use-bigvgan-vocoder'], action='store_true', help="Uses BigVGAN in place of the default vocoder")
|
parser.add_argument("--vocoder-model", default=default_arguments['vocoder-model'], action='store_true', help="Specifies with vocoder to use")
|
||||||
parser.add_argument("--device-override", default=default_arguments['device-override'], help="A device string to override pass through Torch")
|
parser.add_argument("--device-override", default=default_arguments['device-override'], help="A device string to override pass through Torch")
|
||||||
parser.add_argument("--sample-batch-size", default=default_arguments['sample-batch-size'], type=int, help="Sets how many batches to use during the autoregressive samples pass")
|
parser.add_argument("--sample-batch-size", default=default_arguments['sample-batch-size'], type=int, help="Sets how many batches to use during the autoregressive samples pass")
|
||||||
parser.add_argument("--concurrency-count", type=int, default=default_arguments['concurrency-count'], help="How many Gradio events to process at once")
|
parser.add_argument("--concurrency-count", type=int, default=default_arguments['concurrency-count'], help="How many Gradio events to process at once")
|
||||||
|
@ -1620,7 +1622,7 @@ def setup_args():
|
||||||
|
|
||||||
return args
|
return args
|
||||||
|
|
||||||
def update_args( listen, share, check_for_updates, models_from_local_only, low_vram, embed_output_metadata, latents_lean_and_mean, voice_fixer, voice_fixer_use_cuda, force_cpu_for_conditioning_latents, defer_tts_load, prune_nonfinal_outputs, use_bigvgan_vocoder, device_override, sample_batch_size, concurrency_count, autocalculate_voice_chunk_duration_size, output_volume, autoregressive_model, whisper_backend, whisper_model, training_default_halfp, training_default_bnb ):
|
def update_args( listen, share, check_for_updates, models_from_local_only, low_vram, embed_output_metadata, latents_lean_and_mean, voice_fixer, voice_fixer_use_cuda, force_cpu_for_conditioning_latents, defer_tts_load, prune_nonfinal_outputs, device_override, sample_batch_size, concurrency_count, autocalculate_voice_chunk_duration_size, output_volume, autoregressive_model, vocoder_model, whisper_backend, whisper_model, training_default_halfp, training_default_bnb ):
|
||||||
global args
|
global args
|
||||||
|
|
||||||
args.listen = listen
|
args.listen = listen
|
||||||
|
@ -1631,7 +1633,6 @@ def update_args( listen, share, check_for_updates, models_from_local_only, low_v
|
||||||
args.force_cpu_for_conditioning_latents = force_cpu_for_conditioning_latents
|
args.force_cpu_for_conditioning_latents = force_cpu_for_conditioning_latents
|
||||||
args.defer_tts_load = defer_tts_load
|
args.defer_tts_load = defer_tts_load
|
||||||
args.prune_nonfinal_outputs = prune_nonfinal_outputs
|
args.prune_nonfinal_outputs = prune_nonfinal_outputs
|
||||||
args.use_bigvgan_vocoder = use_bigvgan_vocoder
|
|
||||||
args.device_override = device_override
|
args.device_override = device_override
|
||||||
args.sample_batch_size = sample_batch_size
|
args.sample_batch_size = sample_batch_size
|
||||||
args.embed_output_metadata = embed_output_metadata
|
args.embed_output_metadata = embed_output_metadata
|
||||||
|
@ -1644,6 +1645,7 @@ def update_args( listen, share, check_for_updates, models_from_local_only, low_v
|
||||||
args.output_volume = output_volume
|
args.output_volume = output_volume
|
||||||
|
|
||||||
args.autoregressive_model = autoregressive_model
|
args.autoregressive_model = autoregressive_model
|
||||||
|
args.vocoder_model = vocoder_model
|
||||||
args.whisper_backend = whisper_backend
|
args.whisper_backend = whisper_backend
|
||||||
args.whisper_model = whisper_model
|
args.whisper_model = whisper_model
|
||||||
|
|
||||||
|
@ -1663,7 +1665,6 @@ def save_args_settings():
|
||||||
'force-cpu-for-conditioning-latents': args.force_cpu_for_conditioning_latents,
|
'force-cpu-for-conditioning-latents': args.force_cpu_for_conditioning_latents,
|
||||||
'defer-tts-load': args.defer_tts_load,
|
'defer-tts-load': args.defer_tts_load,
|
||||||
'prune-nonfinal-outputs': args.prune_nonfinal_outputs,
|
'prune-nonfinal-outputs': args.prune_nonfinal_outputs,
|
||||||
'use-bigvgan-vocoder': args.use_bigvgan_vocoder,
|
|
||||||
'device-override': args.device_override,
|
'device-override': args.device_override,
|
||||||
'sample-batch-size': args.sample_batch_size,
|
'sample-batch-size': args.sample_batch_size,
|
||||||
'embed-output-metadata': args.embed_output_metadata,
|
'embed-output-metadata': args.embed_output_metadata,
|
||||||
|
@ -1676,6 +1677,7 @@ def save_args_settings():
|
||||||
'output-volume': args.output_volume,
|
'output-volume': args.output_volume,
|
||||||
|
|
||||||
'autoregressive-model': args.autoregressive_model,
|
'autoregressive-model': args.autoregressive_model,
|
||||||
|
'vocoder-model': args.vocoder_model,
|
||||||
'whisper-backend': args.whisper_backend,
|
'whisper-backend': args.whisper_backend,
|
||||||
'whisper-model': args.whisper_model,
|
'whisper-model': args.whisper_model,
|
||||||
|
|
||||||
|
@ -1791,11 +1793,11 @@ def load_tts( restart=False, model=None ):
|
||||||
if model:
|
if model:
|
||||||
args.autoregressive_model = model
|
args.autoregressive_model = model
|
||||||
|
|
||||||
print(f"Loading TorToiSe... (using model: {args.autoregressive_model})")
|
print(f"Loading TorToiSe... (AR: {args.autoregressive_model}, vocoder: {args.vocoder_model})")
|
||||||
|
|
||||||
tts_loading = True
|
tts_loading = True
|
||||||
try:
|
try:
|
||||||
tts = TextToSpeech(minor_optimizations=not args.low_vram, autoregressive_model_path=args.autoregressive_model)
|
tts = TextToSpeech(minor_optimizations=not args.low_vram, autoregressive_model_path=args.autoregressive_model, vocoder_model=args.vocoder_model)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
tts = TextToSpeech(minor_optimizations=not args.low_vram)
|
tts = TextToSpeech(minor_optimizations=not args.low_vram)
|
||||||
load_autoregressive_model(args.autoregressive_model)
|
load_autoregressive_model(args.autoregressive_model)
|
||||||
|
@ -1843,35 +1845,32 @@ def update_autoregressive_model(autoregressive_model_path):
|
||||||
return
|
return
|
||||||
|
|
||||||
print(f"Loading model: {autoregressive_model_path}")
|
print(f"Loading model: {autoregressive_model_path}")
|
||||||
|
tts.load_autoregressive_model(autoregressive_model_path)
|
||||||
if hasattr(tts, 'load_autoregressive_model') and tts.load_autoregressive_model(autoregressive_model_path):
|
|
||||||
tts.load_autoregressive_model(autoregressive_model_path)
|
|
||||||
# polyfill in case a user did NOT update the packages
|
|
||||||
# this shouldn't happen anymore, as I just clone mrq/tortoise-tts, and inject it into sys.path
|
|
||||||
else:
|
|
||||||
from tortoise.models.autoregressive import UnifiedVoice
|
|
||||||
|
|
||||||
tts.autoregressive_model_path = autoregressive_model_path if autoregressive_model_path and os.path.exists(autoregressive_model_path) else get_model_path('autoregressive.pth', tts.models_dir)
|
|
||||||
|
|
||||||
del tts.autoregressive
|
|
||||||
tts.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
|
|
||||||
model_dim=1024,
|
|
||||||
heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False,
|
|
||||||
train_solo_embeddings=False).cpu().eval()
|
|
||||||
tts.autoregressive.load_state_dict(torch.load(tts.autoregressive_model_path))
|
|
||||||
tts.autoregressive.post_init_gpt2_config(kv_cache=tts.use_kv_cache)
|
|
||||||
if tts.preloaded_tensors:
|
|
||||||
tts.autoregressive = tts.autoregressive.to(tts.device)
|
|
||||||
|
|
||||||
if not hasattr(tts, 'autoregressive_model_hash'):
|
|
||||||
tts.autoregressive_model_hash = hash_file(autoregressive_model_path)
|
|
||||||
|
|
||||||
print(f"Loaded model: {tts.autoregressive_model_path}")
|
print(f"Loaded model: {tts.autoregressive_model_path}")
|
||||||
|
|
||||||
do_gc()
|
do_gc()
|
||||||
|
|
||||||
return autoregressive_model_path
|
return autoregressive_model_path
|
||||||
|
|
||||||
|
def update_vocoder_model(vocoder_model):
|
||||||
|
args.vocoder_model = vocoder_model
|
||||||
|
save_args_settings()
|
||||||
|
print(f'Stored vocoder model to settings: {vocoder_model}')
|
||||||
|
|
||||||
|
global tts
|
||||||
|
if not tts:
|
||||||
|
if tts_loading:
|
||||||
|
raise Exception("TTS is still initializing...")
|
||||||
|
return
|
||||||
|
|
||||||
|
print(f"Loading model: {vocoder_model}")
|
||||||
|
tts.load_vocoder_model(vocoder_model)
|
||||||
|
print(f"Loaded model: {tts.vocoder_model}")
|
||||||
|
|
||||||
|
do_gc()
|
||||||
|
|
||||||
|
return vocoder_model
|
||||||
|
|
||||||
def load_voicefixer(restart=False):
|
def load_voicefixer(restart=False):
|
||||||
global voicefixer
|
global voicefixer
|
||||||
|
|
||||||
|
|
10
src/webui.py
10
src/webui.py
|
@ -577,7 +577,6 @@ def setup_gradio():
|
||||||
gr.Checkbox(label="Force CPU for Conditioning Latents", value=args.force_cpu_for_conditioning_latents),
|
gr.Checkbox(label="Force CPU for Conditioning Latents", value=args.force_cpu_for_conditioning_latents),
|
||||||
gr.Checkbox(label="Do Not Load TTS On Startup", value=args.defer_tts_load),
|
gr.Checkbox(label="Do Not Load TTS On Startup", value=args.defer_tts_load),
|
||||||
gr.Checkbox(label="Delete Non-Final Output", value=args.prune_nonfinal_outputs),
|
gr.Checkbox(label="Delete Non-Final Output", value=args.prune_nonfinal_outputs),
|
||||||
gr.Checkbox(label="Use BigVGAN Vocoder", value=args.use_bigvgan_vocoder),
|
|
||||||
gr.Textbox(label="Device Override", value=args.device_override),
|
gr.Textbox(label="Device Override", value=args.device_override),
|
||||||
]
|
]
|
||||||
with gr.Column():
|
with gr.Column():
|
||||||
|
@ -590,10 +589,11 @@ def setup_gradio():
|
||||||
|
|
||||||
autoregressive_model_dropdown = gr.Dropdown(choices=autoregressive_models, label="Autoregressive Model", value=args.autoregressive_model if args.autoregressive_model else autoregressive_models[0])
|
autoregressive_model_dropdown = gr.Dropdown(choices=autoregressive_models, label="Autoregressive Model", value=args.autoregressive_model if args.autoregressive_model else autoregressive_models[0])
|
||||||
|
|
||||||
|
vocoder_models = gr.Dropdown(VOCODERS, label="Vocoder", value=args.vocoder_model if args.vocoder_model else VOCODERS[-1])
|
||||||
whisper_backend = gr.Dropdown(WHISPER_BACKENDS, label="Whisper Backends", value=args.whisper_backend)
|
whisper_backend = gr.Dropdown(WHISPER_BACKENDS, label="Whisper Backends", value=args.whisper_backend)
|
||||||
whisper_model_dropdown = gr.Dropdown(WHISPER_MODELS, label="Whisper Model", value=args.whisper_model)
|
whisper_model_dropdown = gr.Dropdown(WHISPER_MODELS, label="Whisper Model", value=args.whisper_model)
|
||||||
|
|
||||||
exec_inputs = exec_inputs + [ autoregressive_model_dropdown, whisper_backend, whisper_model_dropdown, training_halfp, training_bnb ]
|
exec_inputs = exec_inputs + [ autoregressive_model_dropdown, vocoder_models, whisper_backend, whisper_model_dropdown, training_halfp, training_bnb ]
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
autoregressive_models_update_button = gr.Button(value="Refresh Model List")
|
autoregressive_models_update_button = gr.Button(value="Refresh Model List")
|
||||||
|
@ -626,6 +626,12 @@ def setup_gradio():
|
||||||
outputs=None
|
outputs=None
|
||||||
)
|
)
|
||||||
|
|
||||||
|
vocoder_models.change(
|
||||||
|
fn=update_vocoder_model,
|
||||||
|
inputs=vocoder_models,
|
||||||
|
outputs=None
|
||||||
|
)
|
||||||
|
|
||||||
input_settings = [
|
input_settings = [
|
||||||
text,
|
text,
|
||||||
delimiter,
|
delimiter,
|
||||||
|
|
|
@ -1 +1 @@
|
||||||
Subproject commit 6fcd8c604f066e4e346da522bd14e6670395025f
|
Subproject commit e2db36af602297501132f7f68331755f5904825a
|
Loading…
Reference in New Issue
Block a user