import os if 'XDG_CACHE_HOME' not in os.environ: os.environ['XDG_CACHE_HOME'] = os.path.realpath(os.path.join(os.getcwd(), './models/')) if 'TORTOISE_MODELS_DIR' not in os.environ: os.environ['TORTOISE_MODELS_DIR'] = os.path.realpath(os.path.join(os.getcwd(), './models/tortoise/')) if 'TRANSFORMERS_CACHE' not in os.environ: os.environ['TRANSFORMERS_CACHE'] = os.path.realpath(os.path.join(os.getcwd(), './models/transformers/')) import argparse import time import json import base64 import re import urllib.request import signal import gc import subprocess import psutil import yaml import tqdm import torch import torchaudio import music_tag import gradio as gr import gradio.utils import pandas as pd from datetime import datetime from datetime import timedelta from tortoise.api import TextToSpeech, MODELS, get_model_path, pad_or_truncate from tortoise.utils.audio import load_audio, load_voice, load_voices, get_voice_dir from tortoise.utils.text import split_and_recombine_text from tortoise.utils.device import get_device_name, set_device_name, get_device_count, get_device_vram MODELS['dvae.pth'] = "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/3704aea61678e7e468a06d8eea121dba368a798e/.models/dvae.pth" WHISPER_MODELS = ["tiny", "base", "small", "medium", "large", "large-v2"] WHISPER_SPECIALIZED_MODELS = ["tiny.en", "base.en", "small.en", "medium.en"] WHISPER_BACKENDS = ["openai/whisper", "lightmare/whispercpp", "m-bain/whisperx"] VOCODERS = ['univnet', 'bigvgan_base_24khz_100band', 'bigvgan_24khz_100band'] GENERATE_SETTINGS_ARGS = None EPOCH_SCHEDULE = [ 9, 18, 25, 33 ] args = None tts = None tts_loading = False webui = None voicefixer = None whisper_model = None training_state = None current_voice = None def generate(**kwargs): parameters = {} parameters.update(kwargs) voice = parameters['voice'] progress = parameters['progress'] if 'progress' in parameters else None if parameters['seed'] == 0: parameters['seed'] = None usedSeed = parameters['seed'] global args global tts unload_whisper() unload_voicefixer() if not tts: # should check if it's loading or unloaded, and load it if it's unloaded if tts_loading: raise Exception("TTS is still initializing...") if progress is not None: progress(0, "Initializing TTS...") load_tts() if hasattr(tts, "loading") and tts.loading: raise Exception("TTS is still initializing...") do_gc() voice_samples = None conditioning_latents =None sample_voice = None voice_cache = {} def fetch_voice( voice ): print(f"Loading voice: {voice} with model {tts.autoregressive_model_hash[:8]}") cache_key = f'{voice}:{tts.autoregressive_model_hash[:8]}' if cache_key in voice_cache: return voice_cache[cache_key] sample_voice = None if voice == "microphone": if parameters['mic_audio'] is None: raise Exception("Please provide audio from mic when choosing `microphone` as a voice input") voice_samples, conditioning_latents = [load_audio(parameters['mic_audio'], tts.input_sample_rate)], None elif voice == "random": voice_samples, conditioning_latents = None, tts.get_random_conditioning_latents() else: if progress is not None: progress(0, desc=f"Loading voice: {voice}") voice_samples, conditioning_latents = load_voice(voice, model_hash=tts.autoregressive_model_hash) if voice_samples and len(voice_samples) > 0: if conditioning_latents is None: conditioning_latents = compute_latents(voice=voice, voice_samples=voice_samples, voice_latents_chunks=parameters['voice_latents_chunks']) sample_voice = torch.cat(voice_samples, dim=-1).squeeze().cpu() voice_samples = None voice_cache[cache_key] = (voice_samples, conditioning_latents, sample_voice) return voice_cache[cache_key] def get_settings( override=None ): settings = { 'temperature': float(parameters['temperature']), 'top_p': float(parameters['top_p']), 'diffusion_temperature': float(parameters['diffusion_temperature']), 'length_penalty': float(parameters['length_penalty']), 'repetition_penalty': float(parameters['repetition_penalty']), 'cond_free_k': float(parameters['cond_free_k']), 'num_autoregressive_samples': parameters['num_autoregressive_samples'], 'sample_batch_size': args.sample_batch_size, 'diffusion_iterations': parameters['diffusion_iterations'], 'voice_samples': None, 'conditioning_latents': None, 'use_deterministic_seed': parameters['seed'], 'return_deterministic_state': True, 'k': parameters['candidates'], 'diffusion_sampler': parameters['diffusion_sampler'], 'breathing_room': parameters['breathing_room'], 'progress': parameters['progress'], 'half_p': "Half Precision" in parameters['experimentals'], 'cond_free': "Conditioning-Free" in parameters['experimentals'], 'cvvp_amount': parameters['cvvp_weight'], 'autoregressive_model': args.autoregressive_model, } # could be better to just do a ternary on everything above, but i am not a professional selected_voice = voice if override is not None: if 'voice' in override: selected_voice = override['voice'] for k in override: if k not in settings: continue settings[k] = override[k] if settings['autoregressive_model'] is not None: if settings['autoregressive_model'] == "auto": settings['autoregressive_model'] = deduce_autoregressive_model(selected_voice) tts.load_autoregressive_model(settings['autoregressive_model']) settings['voice_samples'], settings['conditioning_latents'], _ = fetch_voice(voice=selected_voice) # clamp it down for the insane users who want this # it would be wiser to enforce the sample size to the batch size, but this is what the user wants settings['sample_batch_size'] = args.sample_batch_size if not settings['sample_batch_size']: settings['sample_batch_size'] = tts.autoregressive_batch_size if settings['num_autoregressive_samples'] < settings['sample_batch_size']: settings['sample_batch_size'] = settings['num_autoregressive_samples'] if settings['conditioning_latents'] is not None and len(settings['conditioning_latents']) == 2 and settings['cvvp_amount'] > 0: print("Requesting weighing against CVVP weight, but voice latents are missing some extra data. Please regenerate your voice latents with 'Slimmer voice latents' unchecked.") settings['cvvp_amount'] = 0 return settings if not parameters['delimiter']: parameters['delimiter'] = "\n" elif parameters['delimiter'] == "\\n": parameters['delimiter'] = "\n" if parameters['delimiter'] and parameters['delimiter'] != "" and parameters['delimiter'] in parameters['text']: texts = parameters['text'].split(parameters['delimiter']) else: texts = split_and_recombine_text(parameters['text']) full_start_time = time.time() outdir = f"./results/{voice}/" os.makedirs(outdir, exist_ok=True) audio_cache = {} resample = None if tts.output_sample_rate != args.output_sample_rate: resampler = torchaudio.transforms.Resample( tts.output_sample_rate, args.output_sample_rate, lowpass_filter_width=16, rolloff=0.85, resampling_method="kaiser_window", beta=8.555504641634386, ) volume_adjust = torchaudio.transforms.Vol(gain=args.output_volume, gain_type="amplitude") if args.output_volume != 1 else None idx = 0 idx_cache = {} for i, file in enumerate(os.listdir(outdir)): filename = os.path.basename(file) extension = os.path.splitext(filename)[1] if extension != ".json" and extension != ".wav": continue match = re.findall(rf"^{voice}_(\d+)(?:.+?)?{extension}$", filename) if match and len(match) > 0: key = int(match[0]) idx_cache[key] = True if len(idx_cache) > 0: keys = sorted(list(idx_cache.keys())) idx = keys[-1] + 1 idx = pad(idx, 4) def get_name(line=0, candidate=0, combined=False): name = f"{idx}" if combined: name = f"{name}_combined" elif len(texts) > 1: name = f"{name}_{line}" if parameters['candidates'] > 1: name = f"{name}_{candidate}" return name def get_info( voice, settings = None, latents = True ): info = {} info.update(parameters) info['time'] = time.time()-full_start_time info['datetime'] = datetime.now().isoformat() info['model'] = tts.autoregressive_model_path info['model_hash'] = tts.autoregressive_model_hash info['progress'] = None del info['progress'] if info['delimiter'] == "\n": info['delimiter'] = "\\n" if settings is not None: for k in settings: if k in info: info[k] = settings[k] if 'half_p' in settings and 'cond_free' in settings: info['experimentals'] = [] if settings['half_p']: info['experimentals'].append("Half Precision") if settings['cond_free']: info['experimentals'].append("Conditioning-Free") if latents and "latents" not in info: voice = info['voice'] model_hash = settings["model_hash"][:8] if settings is not None and "model_hash" in settings else tts.autoregressive_model_hash[:8] dir = f'{get_voice_dir()}/{voice}/' latents_path = f'{dir}/cond_latents_{model_hash}.pth' if voice == "random" or voice == "microphone": if latents and settings is not None and settings['conditioning_latents']: os.makedirs(dir, exist_ok=True) torch.save(conditioning_latents, latents_path) if latents_path and os.path.exists(latents_path): try: with open(latents_path, 'rb') as f: info['latents'] = base64.b64encode(f.read()).decode("ascii") except Exception as e: pass return info for line, cut_text in enumerate(texts): if parameters['emotion'] == "Custom": if parameters['prompt'] and parameters['prompt'].strip() != "": cut_text = f"[{parameters['prompt']},] {cut_text}" elif parameters['emotion'] != "None" and parameters['emotion']: cut_text = f"[I am really {parameters['emotion'].lower()},] {cut_text}" progress.msg_prefix = f'[{str(line+1)}/{str(len(texts))}]' print(f"{progress.msg_prefix} Generating line: {cut_text}") start_time = time.time() # do setting editing match = re.findall(r'^(\{.+\}) (.+?)$', cut_text) override = None if match and len(match) > 0: match = match[0] try: override = json.loads(match[0]) cut_text = match[1].strip() except Exception as e: raise Exception("Prompt settings editing requested, but received invalid JSON") settings = get_settings( override=override ) gen, additionals = tts.tts(cut_text, **settings ) parameters['seed'] = additionals[0] run_time = time.time()-start_time print(f"Generating line took {run_time} seconds") if not isinstance(gen, list): gen = [gen] for j, g in enumerate(gen): audio = g.squeeze(0).cpu() name = get_name(line=line, candidate=j) settings['text'] = cut_text settings['time'] = run_time settings['datetime'] = datetime.now().isoformat(), settings['model'] = tts.autoregressive_model_path settings['model_hash'] = tts.autoregressive_model_hash audio_cache[name] = { 'audio': audio, 'settings': get_info(voice=override['voice'] if override and 'voice' in override else voice, settings=settings) } # save here in case some error happens mid-batch torchaudio.save(f'{outdir}/{voice}_{name}.wav', audio, tts.output_sample_rate) del gen do_gc() for k in audio_cache: audio = audio_cache[k]['audio'] if resampler is not None: audio = resampler(audio) if volume_adjust is not None: audio = volume_adjust(audio) audio_cache[k]['audio'] = audio torchaudio.save(f'{outdir}/{voice}_{k}.wav', audio, args.output_sample_rate) output_voices = [] for candidate in range(parameters['candidates']): if len(texts) > 1: audio_clips = [] for line in range(len(texts)): name = get_name(line=line, candidate=candidate) audio = audio_cache[name]['audio'] audio_clips.append(audio) name = get_name(candidate=candidate, combined=True) audio = torch.cat(audio_clips, dim=-1) torchaudio.save(f'{outdir}/{voice}_{name}.wav', audio, args.output_sample_rate) audio = audio.squeeze(0).cpu() audio_cache[name] = { 'audio': audio, 'settings': get_info(voice=voice), 'output': True } else: name = get_name(candidate=candidate) audio_cache[name]['output'] = True if args.voice_fixer: if not voicefixer: progress(0, "Loading voicefix...") load_voicefixer() try: fixed_cache = {} for name in progress.tqdm(audio_cache, desc="Running voicefix..."): del audio_cache[name]['audio'] if 'output' not in audio_cache[name] or not audio_cache[name]['output']: continue path = f'{outdir}/{voice}_{name}.wav' fixed = f'{outdir}/{voice}_{name}_fixed.wav' voicefixer.restore( input=path, output=fixed, cuda=get_device_name() == "cuda" and args.voice_fixer_use_cuda, #mode=mode, ) fixed_cache[f'{name}_fixed'] = { 'settings': audio_cache[name]['settings'], 'output': True } audio_cache[name]['output'] = False for name in fixed_cache: audio_cache[name] = fixed_cache[name] except Exception as e: print(e) print("\nFailed to run Voicefixer") for name in audio_cache: if 'output' not in audio_cache[name] or not audio_cache[name]['output']: if args.prune_nonfinal_outputs: audio_cache[name]['pruned'] = True os.remove(f'{outdir}/{voice}_{name}.wav') continue output_voices.append(f'{outdir}/{voice}_{name}.wav') if not args.embed_output_metadata: with open(f'{outdir}/{voice}_{name}.json', 'w', encoding="utf-8") as f: f.write(json.dumps(audio_cache[name]['settings'], indent='\t') ) if args.embed_output_metadata: for name in progress.tqdm(audio_cache, desc="Embedding metadata..."): if 'pruned' in audio_cache[name] and audio_cache[name]['pruned']: continue metadata = music_tag.load_file(f"{outdir}/{voice}_{name}.wav") metadata['lyrics'] = json.dumps(audio_cache[name]['settings']) metadata.save() if sample_voice is not None: sample_voice = (tts.input_sample_rate, sample_voice.numpy()) info = get_info(voice=voice, latents=False) print(f"Generation took {info['time']} seconds, saved to '{output_voices[0]}'\n") info['seed'] = usedSeed if 'latents' in info: del info['latents'] os.makedirs('./config/', exist_ok=True) with open(f'./config/generate.json', 'w', encoding="utf-8") as f: f.write(json.dumps(info, indent='\t') ) stats = [ [ parameters['seed'], "{:.3f}".format(info['time']) ] ] return ( sample_voice, output_voices, stats, ) def cancel_generate(): import tortoise.api tortoise.api.STOP_SIGNAL = True def hash_file(path, algo="md5", buffer_size=0): import hashlib hash = None if algo == "md5": hash = hashlib.md5() elif algo == "sha1": hash = hashlib.sha1() else: raise Exception(f'Unknown hash algorithm specified: {algo}') if not os.path.exists(path): raise Exception(f'Path not found: {path}') with open(path, 'rb') as f: if buffer_size > 0: while True: data = f.read(buffer_size) if not data: break hash.update(data) else: hash.update(f.read()) return "{0}".format(hash.hexdigest()) def update_baseline_for_latents_chunks( voice ): global current_voice current_voice = voice path = f'{get_voice_dir()}/{voice}/' if not os.path.isdir(path): return 1 dataset_file = f'./training/{voice}/train.txt' if os.path.exists(dataset_file): return 0 # 0 will leverage using the LJspeech dataset for computing latents files = os.listdir(path) total = 0 total_duration = 0 for file in files: if file[-4:] != ".wav": continue metadata = torchaudio.info(f'{path}/{file}') duration = metadata.num_channels * metadata.num_frames / metadata.sample_rate total_duration += duration total = total + 1 # brain too fried to figure out a better way if args.autocalculate_voice_chunk_duration_size == 0: return int(total_duration / total) if total > 0 else 1 return int(total_duration / args.autocalculate_voice_chunk_duration_size) if total_duration > 0 else 1 def compute_latents(voice=None, voice_samples=None, voice_latents_chunks=0, progress=None): global tts global args unload_whisper() unload_voicefixer() if not tts: if tts_loading: raise Exception("TTS is still initializing...") load_tts() if hasattr(tts, "loading") and tts.loading: raise Exception("TTS is still initializing...") if args.autoregressive_model == "auto": tts.load_autoregressive_model(deduce_autoregressive_model(voice)) if voice: load_from_dataset = voice_latents_chunks == 0 if load_from_dataset: dataset_path = f'./training/{voice}/train.txt' if not os.path.exists(dataset_path): load_from_dataset = False else: with open(dataset_path, 'r', encoding="utf-8") as f: lines = f.readlines() print("Leveraging LJSpeech dataset for computing latents") voice_samples = [] max_length = 0 for line in lines: filename = f'./training/{voice}/{line.split("|")[0]}' waveform = load_audio(filename, 22050) max_length = max(max_length, waveform.shape[-1]) voice_samples.append(waveform) for i in range(len(voice_samples)): voice_samples[i] = pad_or_truncate(voice_samples[i], max_length) voice_latents_chunks = len(voice_samples) if not load_from_dataset: voice_samples, _ = load_voice(voice, load_latents=False) if voice_samples is None: return conditioning_latents = tts.get_conditioning_latents(voice_samples, return_mels=not args.latents_lean_and_mean, slices=voice_latents_chunks, force_cpu=args.force_cpu_for_conditioning_latents, progress=progress) if len(conditioning_latents) == 4: conditioning_latents = (conditioning_latents[0], conditioning_latents[1], conditioning_latents[2], None) outfile = f'{get_voice_dir()}/{voice}/cond_latents_{tts.autoregressive_model_hash[:8]}.pth' torch.save(conditioning_latents, outfile) print(f'Saved voice latents: {outfile}') return conditioning_latents # superfluous, but it cleans up some things class TrainingState(): def __init__(self, config_path, keep_x_past_checkpoints=0, start=True): # parse config to get its iteration with open(config_path, 'r') as file: self.config = yaml.safe_load(file) gpus = self.config["gpus"] self.killed = False self.dataset_dir = f"./training/{self.config['name']}/finetune/" self.batch_size = self.config['datasets']['train']['batch_size'] self.dataset_path = self.config['datasets']['train']['path'] with open(self.dataset_path, 'r', encoding="utf-8") as f: self.dataset_size = len(f.readlines()) self.it = 0 self.its = self.config['train']['niter'] self.epoch = 0 self.epochs = int(self.its*self.batch_size/self.dataset_size) self.checkpoint = 0 self.checkpoints = int(self.its / self.config['logger']['save_checkpoint_freq']) self.buffer = [] self.open_state = False self.training_started = False self.info = {} self.epoch_rate = "" self.epoch_time_start = 0 self.epoch_time_end = 0 self.epoch_time_deltas = 0 self.epoch_taken = 0 self.it_rate = "" self.it_time_start = 0 self.it_time_end = 0 self.it_time_deltas = 0 self.it_taken = 0 self.last_step = 0 self.eta = "?" self.eta_hhmmss = "?" self.nan_detected = False self.last_info_check_at = 0 self.statistics = [] self.losses = [] self.metrics = { 'step': "", 'rate': "", 'loss': "", } self.loss_milestones = [ 1.0, 0.15, 0.05 ] self.load_losses() if keep_x_past_checkpoints > 0: self.cleanup_old(keep=keep_x_past_checkpoints) if start: self.spawn_process(config_path=config_path, gpus=gpus) def spawn_process(self, config_path, gpus=1): self.cmd = ['train.bat', config_path] if os.name == "nt" else ['./train.sh', str(int(gpus)), config_path] print("Spawning process: ", " ".join(self.cmd)) self.process = subprocess.Popen(self.cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True) def load_losses(self, update=False): if not os.path.isdir(f'{self.dataset_dir}/tb_logger/'): return try: from tensorboard.backend.event_processing import event_accumulator use_tensorboard = True except Exception as e: use_tensorboard = False keys = ['loss_text_ce', 'loss_mel_ce', 'loss_gpt_total', 'val_loss_text_ce', 'val_loss_mel_ce'] infos = {} highest_step = self.last_info_check_at if not update: self.statistics = [] if use_tensorboard: logs = sorted([f'{self.dataset_dir}/tb_logger/{d}' for d in os.listdir(f'{self.dataset_dir}/tb_logger/') if d[:6] == "events" ]) if update: logs = [logs[-1]] for log in logs: ea = event_accumulator.EventAccumulator(log, size_guidance={event_accumulator.SCALARS: 0}) ea.Reload() for key in keys: try: scalar = ea.Scalars(key) for s in scalar: if update and s.step <= self.last_info_check_at: continue highest_step = max( highest_step, s.step ) self.statistics.append( { "step": s.step, "value": s.value, "type": key } ) if key == 'loss_gpt_total': self.losses.append( { "step": s.step, "value": s.value, "type": key } ) except Exception as e: pass else: logs = sorted([f'{self.dataset_dir}/{d}' for d in os.listdir(self.dataset_dir) if d[-4:] == ".log" ]) if update: logs = [logs[-1]] for log in logs: with open(log, 'r', encoding="utf-8") as f: lines = f.readlines() for line in lines: if line.find('INFO: [epoch:') >= 0: # easily rip out our stats... match = re.findall(r'\b([a-z_0-9]+?)\b: +?([0-9]\.[0-9]+?e[+-]\d+|[\d,]+)\b', line) if not match or len(match) == 0: continue info = {} for k, v in match: info[k] = float(v.replace(",", "")) if 'iter' in info: it = info['iter'] infos[it] = info for k in infos: if 'loss_gpt_total' in infos[k]: for key in keys: if update and int(k) <= self.last_info_check_at: continue highest_step = max( highest_step, s.step ) self.statistics.append({ "step": int(k), "value": infos[k][key], "type": key }) if key == "loss_gpt_total": self.losses.append({ "step": int(k), "value": infos[k][key], "type": key }) self.last_info_check_at = highest_step def cleanup_old(self, keep=2): if keep <= 0: return if not os.path.isdir(self.dataset_dir): return models = sorted([ int(d[:-8]) for d in os.listdir(f'{self.dataset_dir}/models/') if d[-8:] == "_gpt.pth" ]) states = sorted([ int(d[:-6]) for d in os.listdir(f'{self.dataset_dir}/training_state/') if d[-6:] == ".state" ]) remove_models = models[:-2] remove_states = states[:-2] for d in remove_models: path = f'{self.dataset_dir}/models/{d}_gpt.pth' print("Removing", path) os.remove(path) for d in remove_states: path = f'{self.dataset_dir}/training_state/{d}.state' print("Removing", path) os.remove(path) def parse(self, line, verbose=False, keep_x_past_checkpoints=0, buffer_size=8, progress=None ): self.buffer.append(f'{line}') should_return = False percent = 0 message = None # rip out iteration info if not self.training_started: if line.find('Start training from epoch') >= 0: self.it_time_start = time.time() self.epoch_time_start = time.time() self.training_started = True # could just leverage the above variable, but this is python, and there's no point in these aggressive microoptimizations should_return = True match = re.findall(r'epoch: ([\d,]+)', line) if match and len(match) > 0: self.epoch = int(match[0].replace(",", "")) match = re.findall(r'iter: ([\d,]+)', line) if match and len(match) > 0: self.it = int(match[0].replace(",", "")) self.checkpoints = int((self.its - self.it) / self.config['logger']['save_checkpoint_freq']) else: lapsed = False message = None if line.find('INFO: [epoch:') >= 0: info_line = line.split("INFO:")[-1] # to-do, actually validate this works, and probably kill training when it's found, the model's dead by this point if ': nan' in info_line and not self.nan_detected: self.nan_detected = self.it # easily rip out our stats... match = re.findall(r'\b([a-z_0-9]+?)\b: *?([0-9]\.[0-9]+?e[+-]\d+|[\d,]+)\b', info_line) if match and len(match) > 0: for k, v in match: self.info[k] = float(v.replace(",", "")) self.load_losses(update=True) should_return = True if 'epoch' in self.info: self.epoch = int(self.info['epoch']) if 'iter' in self.info: self.it = int(self.info['iter']) elif line.find('Saving models and training states') >= 0: self.checkpoint = self.checkpoint + 1 percent = self.checkpoint / float(self.checkpoints) message = f'[{self.checkpoint}/{self.checkpoints}] Saving checkpoint...' if progress is not None: progress(percent, message) print(f'{"{:.3f}".format(percent*100)}% {message}') self.buffer.append(f'{"{:.3f}".format(percent*100)}% {message}') self.cleanup_old(keep=keep_x_past_checkpoints) if line.find('%|') > 0: match = re.findall(r'(\d+)%\|(.+?)\| (\d+|\?)\/(\d+|\?) \[(.+?)<(.+?), +(.+?)\]', line) if match and len(match) > 0: match = match[0] per_cent = int(match[0])/100.0 progressbar = match[1] step = int(match[2]) steps = int(match[3]) elapsed = match[4] until = match[5] rate = match[6] last_step = self.last_step self.last_step = step if last_step < step: self.it = self.it + (step - last_step) if last_step == step and step == steps: lapsed = True self.it_time_end = time.time() self.it_time_delta = self.it_time_end-self.it_time_start self.it_time_start = time.time() self.it_taken = self.it_taken + 1 if self.it_time_delta: try: rate = f'{"{:.3f}".format(self.it_time_delta)}s/it' if self.it_time_delta >= 1 or self.it_time_delta == 0 else f'{"{:.3f}".format(1/self.it_time_delta)}it/s' self.it_rate = rate except Exception as e: pass self.metrics['step'] = [f"{self.epoch}/{self.epochs}"] if self.epochs != self.its: self.metrics['step'].append(f"{self.it}/{self.its}") if steps > 1: self.metrics['step'].append(f"{step}/{steps}") self.metrics['step'] = ", ".join(self.metrics['step']) if lapsed: self.epoch = self.epoch + 1 self.it = int(self.epoch * (self.dataset_size / self.batch_size)) self.epoch_time_end = time.time() self.epoch_time_delta = self.epoch_time_end-self.epoch_time_start self.epoch_time_start = time.time() try: self.epoch_rate = f'{"{:.3f}".format(self.epoch_time_delta)}s/epoch' if self.epoch_time_delta >= 1 or self.epoch_time_delta == 0 else f'{"{:.3f}".format(1/self.epoch_time_delta)}epoch/s' # I doubt anyone will have it/s rates, but its here except Exception as e: pass #self.eta = (self.epochs - self.epoch) * self.epoch_time_delta self.epoch_time_deltas = self.epoch_time_deltas + self.epoch_time_delta self.epoch_taken = self.epoch_taken + 1 self.eta = (self.epochs - self.epoch) * (self.epoch_time_deltas / self.epoch_taken) try: eta = str(timedelta(seconds=int(self.eta))) self.eta_hhmmss = eta except Exception as e: pass self.metrics['rate'] = [] if self.epoch_rate: self.metrics['rate'].append(self.epoch_rate) if self.it_rate and self.epoch_rate != self.it_rate: self.metrics['rate'].append(self.it_rate) self.metrics['rate'] = ", ".join(self.metrics['rate']) eta_hhmmss = "?" if self.eta_hhmmss: eta_hhmmss = self.eta_hhmmss else: try: eta = (self.its - self.it) * (self.it_time_deltas / self.it_taken) eta = str(timedelta(seconds=int(eta))) eta_hhmmss = eta except Exception as e: pass self.metrics['loss'] = [] if 'learning_rate_gpt_0' in self.info: self.metrics['loss'].append(f'LR: {"{:.3e}".format(self.info["learning_rate_gpt_0"])}') if len(self.losses) > 0: self.metrics['loss'].append(f'Loss: {"{:.3f}".format(self.losses[-1]["value"])}') if len(self.losses) >= 2: # """riemann sum""" but not really as this is for derivatives and not integrals deriv = 0 accum_length = len(self.losses)//2 # i *guess* this is fine when you think about it loss_value = self.losses[-1]["value"] for i in range(accum_length): d1_loss = self.losses[accum_length-i-1]["value"] d2_loss = self.losses[accum_length-i-2]["value"] dloss = (d2_loss - d1_loss) d1_step = self.losses[accum_length-i-1]["step"] d2_step = self.losses[accum_length-i-2]["step"] dstep = (d2_step - d1_step) if dstep == 0: continue inst_deriv = dloss / dstep deriv += inst_deriv deriv = deriv / accum_length if deriv != 0: # dloss < 0: next_milestone = None for milestone in self.loss_milestones: if loss_value > milestone: next_milestone = milestone break if next_milestone: # tfw can do simple calculus but not basic algebra in my head est_its = (next_milestone - loss_value) / deriv if est_its >= 0: self.metrics['loss'].append(f'Est. milestone {next_milestone} in: {int(est_its)}its') else: est_loss = inst_deriv * (self.its - self.it) + loss_value if est_loss >= 0: self.metrics['loss'].append(f'Est. final loss: {"{:.3f}".format(est_loss)}') self.metrics['loss'] = ", ".join(self.metrics['loss']) message = f"[{self.metrics['step']}] [{self.metrics['rate']}] [ETA: {eta_hhmmss}]\n[{self.metrics['loss']}]" if self.nan_detected: message = f"[!NaN DETECTED! {self.nan_detected}] {message}" if message: percent = self.it / float(self.its) # self.epoch / float(self.epochs) if progress is not None: progress(percent, message) self.buffer.append(f'[{"{:.3f}".format(percent*100)}%] {message}') if verbose and not self.training_started: should_return = True self.buffer = self.buffer[-buffer_size:] result = None if should_return: result = "".join(self.buffer) if not self.training_started else message return ( result, percent, message, ) try: import altair as alt alt.data_transformers.enable('default', max_rows=None) except Exception as e: print(e) pass def run_training(config_path, verbose=False, keep_x_past_checkpoints=0, progress=gr.Progress(track_tqdm=True)): global training_state if training_state and training_state.process: return "Training already in progress" # ensure we have the dvae.pth get_model_path('dvae.pth') # I don't know if this is still necessary, as it was bitching at me for not doing this, despite it being in a separate process torch.multiprocessing.freeze_support() unload_tts() unload_whisper() unload_voicefixer() training_state = TrainingState(config_path=config_path, keep_x_past_checkpoints=keep_x_past_checkpoints) for line in iter(training_state.process.stdout.readline, ""): if training_state.killed: return result, percent, message = training_state.parse( line=line, verbose=verbose, keep_x_past_checkpoints=keep_x_past_checkpoints, progress=progress ) print(f"[Training] [{datetime.now().isoformat()}] {line[:-1]}") if result: yield result if progress is not None and message: progress(percent, message) if training_state: training_state.process.stdout.close() return_code = training_state.process.wait() training_state = None def update_training_dataplot(config_path=None): global training_state update = None if not training_state: if config_path: training_state = TrainingState(config_path=config_path, start=False) if training_state.statistics: update = gr.LinePlot.update(value=pd.DataFrame(training_state.statistics), x_lim=[0,training_state.its], x="step", y="value", title="Training Metrics", color="type", tooltip=['step', 'value', 'type'], width=600, height=350,) del training_state training_state = None elif training_state.statistics: training_state.load_losses() update = gr.LinePlot.update(value=pd.DataFrame(training_state.statistics), x_lim=[0,training_state.its], x="step", y="value", title="Training Metrics", color="type", tooltip=['step', 'value', 'type'], width=600, height=350,) return update def reconnect_training(verbose=False, progress=gr.Progress(track_tqdm=True)): global training_state if not training_state or not training_state.process: return "Training not in progress" for line in iter(training_state.process.stdout.readline, ""): result, percent, message = training_state.parse( line=line, verbose=verbose, progress=progress ) print(f"[Training] [{datetime.now().isoformat()}] {line[:-1]}") if result: yield result if progress is not None and message: progress(percent, message) def stop_training(): global training_state if training_state is None: return "No training in progress" print("Killing training process...") training_state.killed = True children = [] # wrapped in a try/catch in case for some reason this fails outside of Linux try: children = [p.info for p in psutil.process_iter(attrs=['pid', 'name', 'cmdline']) if './src/train.py' in p.info['cmdline']] except Exception as e: pass training_state.process.stdout.close() training_state.process.terminate() training_state.process.kill() return_code = training_state.process.wait() for p in children: os.kill( p['pid'], signal.SIGKILL ) training_state = None print("Killed training process.") return f"Training cancelled: {return_code}" def get_halfp_model_path(): autoregressive_model_path = get_model_path('autoregressive.pth') return autoregressive_model_path.replace(".pth", "_half.pth") def convert_to_halfp(): autoregressive_model_path = get_model_path('autoregressive.pth') print(f'Converting model to half precision: {autoregressive_model_path}') model = torch.load(autoregressive_model_path) for k in model: model[k] = model[k].half() outfile = get_halfp_model_path() torch.save(model, outfile) print(f'Converted model to half precision: {outfile}') def whisper_transcribe( file, language=None ): # shouldn't happen, but it's for safety if not whisper_model: load_whisper_model(language=language) if args.whisper_backend == "openai/whisper": if not language: language = None return whisper_model.transcribe(file, language=language) elif args.whisper_backend == "lightmare/whispercpp": res = whisper_model.transcribe(file) segments = whisper_model.extract_text_and_timestamps( res ) result = { 'segments': [] } for segment in segments: reparsed = { 'start': segment[0] / 100.0, 'end': segment[1] / 100.0, 'text': segment[2], } result['segments'].append(reparsed) return result # credit to https://git.ecker.tech/yqxtqymn for the busywork of getting this added elif args.whisper_backend == "m-bain/whisperx": import whisperx device = "cuda" if get_device_name() == "cuda" else "cpu" result = whisper_model.transcribe(file) model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device) result_aligned = whisperx.align(result["segments"], model_a, metadata, file, device) for i in range(len(result_aligned['segments'])): del result_aligned['segments'][i]['word-segments'] del result_aligned['segments'][i]['char-segments'] result['segments'] = result_aligned['segments'] return result def prepare_dataset( files, outdir, language=None, skip_existings=False, progress=None ): unload_tts() global whisper_model if whisper_model is None: load_whisper_model(language=language) os.makedirs(f'{outdir}/audio/', exist_ok=True) results = {} transcription = [] files = sorted(files) previous_list = [] if skip_existings and os.path.exists(f'{outdir}/train.txt'): parsed_list = [] with open(f'{outdir}/train.txt', 'r', encoding="utf-8") as f: parsed_list = f.readlines() for line in parsed_list: match = re.findall(r"^(.+?)_\d+\.wav$", line.split("|")[0]) if match is None or len(match) == 0: continue if match[0] not in previous_list: previous_list.append(f'{match[0].split("/")[-1]}.wav') for file in enumerate_progress(files, desc="Iterating through voice files", progress=progress): basename = os.path.basename(file) if basename in previous_list: print(f"Skipping already parsed file: {basename}") continue result = whisper_transcribe(file, language=language) results[basename] = result print(f"Transcribed file: {file}, {len(result['segments'])} found.") waveform, sampling_rate = torchaudio.load(file) num_channels, num_frames = waveform.shape idx = 0 for segment in result['segments']: # enumerate_progress(result['segments'], desc="Segmenting voice file", progress=progress): start = int(segment['start'] * sampling_rate) end = int(segment['end'] * sampling_rate) sliced_waveform = waveform[:, start:end] sliced_name = basename.replace(".wav", f"_{pad(idx, 4)}.wav") if not torch.any(sliced_waveform < 0): print(f"Error with {sliced_name}, skipping...") continue torchaudio.save(f"{outdir}/audio/{sliced_name}", sliced_waveform, sampling_rate) idx = idx + 1 line = f"audio/{sliced_name}|{segment['text'].strip()}" transcription.append(line) with open(f'{outdir}/train.txt', 'a', encoding="utf-8") as f: f.write(f'\n{line}') do_gc() with open(f'{outdir}/whisper.json', 'w', encoding="utf-8") as f: f.write(json.dumps(results, indent='\t')) unload_whisper() joined = "\n".join(transcription) if not skip_existings: with open(f'{outdir}/train.txt', 'w', encoding="utf-8") as f: f.write(joined) return f"Processed dataset to: {outdir}\n{joined}" def prepare_validation_dataset( voice, text_length ): indir = f'./training/{voice}/' infile = f'{indir}/dataset.txt' if not os.path.exists(infile): infile = f'{indir}/train.txt' with open(f'{indir}/train.txt', 'r', encoding="utf-8") as src: with open(f'{indir}/dataset.txt', 'w', encoding="utf-8") as dst: dst.write(src.read()) if not os.path.exists(infile): raise Exception(f"Missing dataset: {infile}") with open(infile, 'r', encoding="utf-8") as f: lines = f.readlines() validation = [] training = [] for line in lines: split = line.split("|") filename = split[0] text = split[1] if len(text) < text_length: validation.append(line.strip()) else: training.append(line.strip()) with open(f'{indir}/train.txt', 'w', encoding="utf-8") as f: f.write("\n".join(training)) with open(f'{indir}/validation.txt', 'w', encoding="utf-8") as f: f.write("\n".join(validation)) msg = f"Culled {len(validation)} lines" print(msg) return msg def calc_iterations( epochs, lines, batch_size ): iterations = int(epochs * lines / float(batch_size)) return iterations def schedule_learning_rate( iterations, schedule=EPOCH_SCHEDULE ): return [int(iterations * d) for d in schedule] def optimize_training_settings( **kwargs ): messages = [] settings = {} settings.update(kwargs) dataset_path = f"./training/{settings['voice']}/train.txt" with open(dataset_path, 'r', encoding="utf-8") as f: lines = len(f.readlines()) if settings['batch_size'] > lines: settings['batch_size'] = lines messages.append(f"Batch size is larger than your dataset, clamping batch size to: {settings['batch_size']}") """ if lines % settings['batch_size'] != 0: settings['batch_size'] = int(lines / settings['batch_size']) if settings['batch_size'] == 0: settings['batch_size'] = 1 messages.append(f"Batch size not neatly divisible by dataset size, adjusting batch size to: {settings['batch_size']}") """ if settings['gradient_accumulation_size'] == 0: settings['gradient_accumulation_size'] = 1 if settings['batch_size'] / settings['gradient_accumulation_size'] < 2: settings['gradient_accumulation_size'] = int(settings['batch_size'] / 2) if settings['gradient_accumulation_size'] == 0: settings['gradient_accumulation_size'] = 1 messages.append(f"Gradient accumulation size is too large for a given batch size, clamping gradient accumulation size to: {settings['gradient_accumulation_size']}") """ elif settings['batch_size'] % settings['gradient_accumulation_size'] != 0: settings['gradient_accumulation_size'] = int(settings['batch_size'] / settings['gradient_accumulation_size']) if settings['gradient_accumulation_size'] == 0: settings['gradient_accumulation_size'] = 1 messages.append(f"Batch size is not evenly divisible by the gradient accumulation size, adjusting gradient accumulation size to: {settings['gradient_accumulation_size']}") if settings['batch_size'] % settings['gpus'] != 0: settings['batch_size'] = int(settings['batch_size'] / settings['gpus']) if settings['batch_size'] == 0: settings['batch_size'] = 1 messages.append(f"Batch size not neatly divisible by GPU count, adjusting batch size to: {settings['batch_size']}") """ def get_device_batch_size( vram ): DEVICE_BATCH_SIZE_MAP = [ (32, 64), # based on my two 6800XTs, I can only really safely get a ratio of 156:2 = 78 (16, 8), # based on an A4000, I can do a ratio of 512:64 = 8:1 (8, 4), # interpolated (6, 2), # based on my 2060, it only really lets me have a batch ratio of 2:1 ] for k, v in DEVICE_BATCH_SIZE_MAP: if vram > (k-1): return v return 1 # assuming you have equal GPUs vram = get_device_vram() * settings['gpus'] batch_ratio = int(settings['batch_size'] / settings['gradient_accumulation_size']) batch_cap = get_device_batch_size(vram) if batch_ratio > batch_cap: settings['gradient_accumulation_size'] = int(settings['batch_size'] / batch_cap) messages.append(f"Batch ratio ({batch_ratio}) is expected to exceed your VRAM capacity ({'{:.3f}'.format(vram)}GB, suggested {batch_cap} batch size cap), adjusting gradient accumulation size to: {settings['gradient_accumulation_size']}") iterations = calc_iterations(epochs=settings['epochs'], lines=lines, batch_size=settings['batch_size']) if settings['epochs'] < settings['print_rate']: settings['print_rate'] = settings['epochs'] messages.append(f"Print rate is too small for the given iteration step, clamping print rate to: {settings['print_rate']}") if settings['epochs'] < settings['save_rate']: settings['save_rate'] = settings['epochs'] messages.append(f"Save rate is too small for the given iteration step, clamping save rate to: {settings['save_rate']}") if settings['epochs'] < settings['validation_rate']: settings['validation_rate'] = settings['epochs'] messages.append(f"Validation rate is too small for the given iteration step, clamping validation rate to: {settings['validation_rate']}") if settings['resume_state'] and not os.path.exists(settings['resume_state']): settings['resume_state'] = None messages.append("Resume path specified, but does not exist. Disabling...") if settings['bitsandbytes']: messages.append("BitsAndBytes requested. Please note this is ! EXPERIMENTAL !") if settings['half_p']: if settings['bitsandbytes']: settings['half_p'] = False messages.append("Half Precision requested, but BitsAndBytes is also requested. Due to redundancies, disabling half precision...") else: messages.append("Half Precision requested. Please note this is ! EXPERIMENTAL !") if not os.path.exists(get_halfp_model_path()): convert_to_halfp() messages.append(f"For {settings['epochs']} epochs with {lines} lines in batches of {settings['batch_size']}, iterating for {iterations} steps ({int(iterations / settings['epochs'])} steps per epoch)") return settings, messages def save_training_settings( **kwargs ): messages = [] settings = {} settings.update(kwargs) outjson = f'./training/{settings["voice"]}/train.json' with open(outjson, 'w', encoding="utf-8") as f: f.write(json.dumps(settings, indent='\t') ) settings['dataset_path'] = f"./training/{settings['voice']}/train.txt" settings['validation_path'] = f"./training/{settings['voice']}/validation.txt" with open(settings['dataset_path'], 'r', encoding="utf-8") as f: lines = len(f.readlines()) if not settings['source_model'] or settings['source_model'] == "auto": settings['source_model'] = f"./models/tortoise/autoregressive{'_half' if settings['half_p'] else ''}.pth" if settings['half_p']: if not os.path.exists(get_halfp_model_path()): convert_to_halfp() settings['iterations'] = calc_iterations(epochs=settings['epochs'], lines=lines, batch_size=settings['batch_size']) messages.append(f"For {settings['epochs']} epochs with {lines} lines, iterating for {settings['iterations']} steps") settings['print_rate'] = int(settings['print_rate'] * settings['iterations'] / settings['epochs']) settings['save_rate'] = int(settings['save_rate'] * settings['iterations'] / settings['epochs']) settings['validation_rate'] = int(settings['validation_rate'] * settings['iterations'] / settings['epochs']) settings['validation_batch_size'] = int(settings['batch_size'] / settings['gradient_accumulation_size']) settings['iterations'] = calc_iterations(epochs=settings['epochs'], lines=lines, batch_size=settings['batch_size']) if settings['iterations'] % settings['save_rate'] != 0: adjustment = int(settings['iterations'] / settings['save_rate']) * settings['save_rate'] messages.append(f"Iteration rate is not evenly divisible by save rate, adjusting: {settings['iterations']} => {adjustment}") settings['iterations'] = adjustment if not os.path.exists(settings['validation_path']): settings['validation_enabled'] = False messages.append("Validation not found, disabling validation...") elif settings['validation_batch_size'] == 0: settings['validation_enabled'] = False messages.append("Validation batch size == 0, disabling validation...") else: settings['validation_enabled'] = True with open(settings['validation_path'], 'r', encoding="utf-8") as f: validation_lines = len(f.readlines()) if validation_lines < settings['validation_batch_size']: settings['validation_batch_size'] = validation_lines messages.append(f"Batch size exceeds validation dataset size, clamping validation batch size to {validation_lines}") if settings['gpus'] > get_device_count(): settings['gpus'] = get_device_count() settings['optimizer'] = 'adamw' if settings['gpus'] == 1 else 'adamw_zero' LEARNING_RATE_SCHEMES = ["MultiStepLR", "CosineAnnealingLR_Restart"] if 'learning_rate_scheme' not in settings or settings['learning_rate_scheme'] not in LEARNING_RATE_SCHEMES: settings['learning_rate_scheme'] = LEARNING_RATE_SCHEMES[0] learning_rate_schema = [f"default_lr_scheme: {settings['learning_rate_scheme']}"] if settings['learning_rate_scheme'] == "MultiStepLR": if not settings['learning_rate_schedule']: settings['learning_rate_schedule'] = EPOCH_SCHEDULE elif isinstance(settings['learning_rate_schedule'],str): settings['learning_rate_schedule'] = json.loads(settings['learning_rate_schedule']) settings['learning_rate_schedule'] = schedule_learning_rate( settings['iterations'] / settings['epochs'], settings['learning_rate_schedule'] ) learning_rate_schema.append(f" gen_lr_steps: {settings['learning_rate_schedule']}") learning_rate_schema.append(f" lr_gamma: 0.5") elif settings['learning_rate_scheme'] == "CosineAnnealingLR_Restart": learning_rate_schema.append(f" T_period: [120000, 120000, 120000]") learning_rate_schema.append(f" warmup: 10000") learning_rate_schema.append(f" eta_min: .01") learning_rate_schema.append(f" restarts: [140000, 280000]") learning_rate_schema.append(f" restart_weights: [.5, .25]") settings['learning_rate_scheme'] = "\n".join(learning_rate_schema) """ if resume_state: settings['pretrain_model_gpt'] = f"# {settings['pretrain_model_gpt']}" else: settings['resume_state'] = f"# resume_state: './training/{voice}/training_state/#.state'" # also disable validation if it doesn't make sense to do it if settings['dataset_path'] == settings['validation_path'] or not os.path.exists(settings['validation_path']): settings['validation_enabled'] = 'false' """ if settings['resume_state']: settings['source_model'] = f"# pretrain_model_gpt: {settings['source_model']}" settings['resume_state'] = f"resume_state: {settings['resume_state']}'" else: settings['source_model'] = f"pretrain_model_gpt: {settings['source_model']}" settings['resume_state'] = f"# resume_state: {settings['resume_state']}'" with open(f'./models/.template.yaml', 'r', encoding="utf-8") as f: yaml = f.read() # i could just load and edit the YAML directly, but this is easier, as I don't need to bother with path traversals for k in settings: if settings[k] is None: continue yaml = yaml.replace(f"${{{k}}}", str(settings[k])) outyaml = f'./training/{settings["voice"]}/train.yaml' with open(outyaml, 'w', encoding="utf-8") as f: f.write(yaml) messages.append(f"Saved training output to: {outyaml}") return settings, messages def import_voices(files, saveAs=None, progress=None): global args if not isinstance(files, list): files = [files] for file in enumerate_progress(files, desc="Importing voice files", progress=progress): j, latents = read_generate_settings(file, read_latents=True) if j is not None and saveAs is None: saveAs = j['voice'] if saveAs is None or saveAs == "": raise Exception("Specify a voice name") outdir = f'{get_voice_dir()}/{saveAs}/' os.makedirs(outdir, exist_ok=True) if latents: print(f"Importing latents to {latents}") with open(f'{outdir}/cond_latents.pth', 'wb') as f: f.write(latents) latents = f'{outdir}/cond_latents.pth' print(f"Imported latents to {latents}") else: filename = file.name if filename[-4:] != ".wav": raise Exception("Please convert to a WAV first") path = f"{outdir}/{os.path.basename(filename)}" print(f"Importing voice to {path}") waveform, sampling_rate = torchaudio.load(filename) if args.voice_fixer: if not voicefixer: load_voicefixer() # resample to best bandwidth since voicefixer will do it anyways through librosa if sampling_rate != 44100: print(f"Resampling imported voice sample: {path}") resampler = torchaudio.transforms.Resample( sampling_rate, 44100, lowpass_filter_width=16, rolloff=0.85, resampling_method="kaiser_window", beta=8.555504641634386, ) waveform = resampler(waveform) sampling_rate = 44100 torchaudio.save(path, waveform, sampling_rate) print(f"Running 'voicefixer' on voice sample: {path}") voicefixer.restore( input = path, output = path, cuda=get_device_name() == "cuda" and args.voice_fixer_use_cuda, #mode=mode, ) else: torchaudio.save(path, waveform, sampling_rate) print(f"Imported voice to {path}") def get_voice_list(dir=get_voice_dir(), append_defaults=False): defaults = [ "random", "microphone" ] os.makedirs(dir, exist_ok=True) res = sorted([d for d in os.listdir(dir) if d is not in defaults and os.path.isdir(os.path.join(dir, d)) and len(os.listdir(os.path.join(dir, d))) > 0 ]) if append_defaults: res = res + defaults return res def get_autoregressive_models(dir="./models/finetunes/", prefixed=False): os.makedirs(dir, exist_ok=True) base = [get_model_path('autoregressive.pth')] halfp = get_halfp_model_path() if os.path.exists(halfp): base.append(halfp) additionals = sorted([f'{dir}/{d}' for d in os.listdir(dir) if d[-4:] == ".pth" ]) found = [] for training in os.listdir(f'./training/'): if not os.path.isdir(f'./training/{training}/') or not os.path.isdir(f'./training/{training}/finetune/') or not os.path.isdir(f'./training/{training}/finetune/models/'): continue models = sorted([ int(d[:-8]) for d in os.listdir(f'./training/{training}/finetune/models/') if d[-8:] == "_gpt.pth" ]) found = found + [ f'./training/{training}/finetune/models/{d}_gpt.pth' for d in models ] if len(found) > 0 or len(additionals) > 0: base = ["auto"] + base res = base + additionals + found if prefixed: for i in range(len(res)): path = res[i] hash = hash_file(path) shorthash = hash[:8] res[i] = f'[{shorthash}] {path}' return res def get_dataset_list(dir="./training/"): return sorted([d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) and "train.txt" in os.listdir(os.path.join(dir, d)) ]) def get_training_list(dir="./training/"): return sorted([f'./training/{d}/train.yaml' for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) and "train.yaml" in os.listdir(os.path.join(dir, d)) ]) def do_gc(): gc.collect() try: torch.cuda.empty_cache() except Exception as e: pass def pad(num, zeroes): return str(num).zfill(zeroes+1) def curl(url): try: req = urllib.request.Request(url, headers={'User-Agent': 'Python'}) conn = urllib.request.urlopen(req) data = conn.read() data = data.decode() data = json.loads(data) conn.close() return data except Exception as e: print(e) return None def check_for_updates( dir = None ): if dir is None: check_for_updates("./.git/") check_for_updates("./.git/modules/dlas/") check_for_updates("./.git/modules/tortoise-tts/") return git_dir = dir if not os.path.isfile(f'{git_dir}/FETCH_HEAD'): print(f"Cannot check for updates for {dir}: not from a git repo") return False with open(f'{git_dir}/FETCH_HEAD', 'r', encoding="utf-8") as f: head = f.read() match = re.findall(r"^([a-f0-9]+).+?https:\/\/(.+?)\/(.+?)\/(.+?)\n", head) if match is None or len(match) == 0: print(f"Cannot check for updates for {dir}: cannot parse FETCH_HEAD") return False match = match[0] local = match[0] host = match[1] owner = match[2] repo = match[3] res = curl(f"https://{host}/api/v1/repos/{owner}/{repo}/branches/") #this only works for gitea instances if res is None or len(res) == 0: print(f"Cannot check for updates for {dir}: cannot fetch from remote") return False remote = res[0]["commit"]["id"] if remote != local: print(f"New version found for {dir}: {local[:8]} => {remote[:8]}") return True return False def enumerate_progress(iterable, desc=None, progress=None, verbose=None): if verbose and desc is not None: print(desc) if progress is None: return tqdm(iterable, disable=not verbose) return progress.tqdm(iterable, desc=f'{progress.msg_prefix} {desc}' if hasattr(progress, 'msg_prefix') else desc, track_tqdm=True) def notify_progress(message, progress=None, verbose=True): if verbose: print(message) if progress is None: return progress(0, desc=message) def get_args(): global args return args def setup_args(): global args default_arguments = { 'share': False, 'listen': None, 'check-for-updates': False, 'models-from-local-only': False, 'low-vram': False, 'sample-batch-size': None, 'embed-output-metadata': True, 'latents-lean-and-mean': True, 'voice-fixer': False, # getting tired of long initialization times in a Colab for downloading a large dataset for it 'voice-fixer-use-cuda': True, 'force-cpu-for-conditioning-latents': False, 'defer-tts-load': False, 'device-override': None, 'prune-nonfinal-outputs': True, 'vocoder-model': VOCODERS[-1], 'concurrency-count': 2, 'autocalculate-voice-chunk-duration-size': 0, 'output-sample-rate': 44100, 'output-volume': 1, 'autoregressive-model': None, 'whisper-backend': 'openai/whisper', 'whisper-model': "base", 'training-default-halfp': False, 'training-default-bnb': True, } if os.path.isfile('./config/exec.json'): with open(f'./config/exec.json', 'r', encoding="utf-8") as f: try: overrides = json.load(f) for k in overrides: default_arguments[k] = overrides[k] except Exception as e: print(e) pass parser = argparse.ArgumentParser() parser.add_argument("--share", action='store_true', default=default_arguments['share'], help="Lets Gradio return a public URL to use anywhere") parser.add_argument("--listen", default=default_arguments['listen'], help="Path for Gradio to listen on") parser.add_argument("--check-for-updates", action='store_true', default=default_arguments['check-for-updates'], help="Checks for update on startup") parser.add_argument("--models-from-local-only", action='store_true', default=default_arguments['models-from-local-only'], help="Only loads models from disk, does not check for updates for models") parser.add_argument("--low-vram", action='store_true', default=default_arguments['low-vram'], help="Disables some optimizations that increases VRAM usage") parser.add_argument("--no-embed-output-metadata", action='store_false', default=not default_arguments['embed-output-metadata'], help="Disables embedding output metadata into resulting WAV files for easily fetching its settings used with the web UI (data is stored in the lyrics metadata tag)") parser.add_argument("--latents-lean-and-mean", action='store_true', default=default_arguments['latents-lean-and-mean'], help="Exports the bare essentials for latents.") parser.add_argument("--voice-fixer", action='store_true', default=default_arguments['voice-fixer'], help="Uses python module 'voicefixer' to improve audio quality, if available.") parser.add_argument("--voice-fixer-use-cuda", action='store_true', default=default_arguments['voice-fixer-use-cuda'], help="Hints to voicefixer to use CUDA, if available.") parser.add_argument("--force-cpu-for-conditioning-latents", default=default_arguments['force-cpu-for-conditioning-latents'], action='store_true', help="Forces computing conditional latents to be done on the CPU (if you constantyl OOM on low chunk counts)") parser.add_argument("--defer-tts-load", default=default_arguments['defer-tts-load'], action='store_true', help="Defers loading TTS model") parser.add_argument("--prune-nonfinal-outputs", default=default_arguments['prune-nonfinal-outputs'], action='store_true', help="Deletes non-final output files on completing a generation") parser.add_argument("--vocoder-model", default=default_arguments['vocoder-model'], action='store_true', help="Specifies with vocoder to use") parser.add_argument("--device-override", default=default_arguments['device-override'], help="A device string to override pass through Torch") parser.add_argument("--sample-batch-size", default=default_arguments['sample-batch-size'], type=int, help="Sets how many batches to use during the autoregressive samples pass") parser.add_argument("--concurrency-count", type=int, default=default_arguments['concurrency-count'], help="How many Gradio events to process at once") parser.add_argument("--autocalculate-voice-chunk-duration-size", type=float, default=default_arguments['autocalculate-voice-chunk-duration-size'], help="Number of seconds to suggest voice chunk size for (for example, 100 seconds of audio at 10 seconds per chunk will suggest 10 chunks)") parser.add_argument("--output-sample-rate", type=int, default=default_arguments['output-sample-rate'], help="Sample rate to resample the output to (from 24KHz)") parser.add_argument("--output-volume", type=float, default=default_arguments['output-volume'], help="Adjusts volume of output") parser.add_argument("--autoregressive-model", default=default_arguments['autoregressive-model'], help="Specifies which autoregressive model to use for sampling.") parser.add_argument("--whisper-backend", default=default_arguments['whisper-backend'], action='store_true', help="Picks which whisper backend to use (openai/whisper, lightmare/whispercpp, m-bain/whisperx)") parser.add_argument("--whisper-model", default=default_arguments['whisper-model'], help="Specifies which whisper model to use for transcription.") parser.add_argument("--training-default-halfp", action='store_true', default=default_arguments['training-default-halfp'], help="Training default: halfp") parser.add_argument("--training-default-bnb", action='store_true', default=default_arguments['training-default-bnb'], help="Training default: bnb") parser.add_argument("--os", default="unix", help="Specifies which OS, easily") args = parser.parse_args() args.embed_output_metadata = not args.no_embed_output_metadata if not args.device_override: set_device_name(args.device_override) args.listen_host = None args.listen_port = None args.listen_path = None if args.listen: try: match = re.findall(r"^(?:(.+?):(\d+))?(\/.*?)?$", args.listen)[0] args.listen_host = match[0] if match[0] != "" else "127.0.0.1" args.listen_port = match[1] if match[1] != "" else None args.listen_path = match[2] if match[2] != "" else "/" except Exception as e: pass if args.listen_port is not None: args.listen_port = int(args.listen_port) if args.listen_port == 0: args.listen_port = None return args def update_args( **kwargs ): global args settings = {} settings.update(kwargs) args.listen = settings['listen'] args.share = settings['share'] args.check_for_updates = settings['check_for_updates'] args.models_from_local_only = settings['models_from_local_only'] args.low_vram = settings['low_vram'] args.force_cpu_for_conditioning_latents = settings['force_cpu_for_conditioning_latents'] args.defer_tts_load = settings['defer_tts_load'] args.prune_nonfinal_outputs = settings['prune_nonfinal_outputs'] args.device_override = settings['device_override'] args.sample_batch_size = settings['sample_batch_size'] args.embed_output_metadata = settings['embed_output_metadata'] args.latents_lean_and_mean = settings['latents_lean_and_mean'] args.voice_fixer = settings['voice_fixer'] args.voice_fixer_use_cuda = settings['voice_fixer_use_cuda'] args.concurrency_count = settings['concurrency_count'] args.output_sample_rate = 44000 args.autocalculate_voice_chunk_duration_size = settings['autocalculate_voice_chunk_duration_size'] args.output_volume = settings['output_volume'] args.autoregressive_model = settings['autoregressive_model'] args.vocoder_model = settings['vocoder_model'] args.whisper_backend = settings['whisper_backend'] args.whisper_model = settings['whisper_model'] args.training_default_halfp = settings['training_default_halfp'] args.training_default_bnb = settings['training_default_bnb'] save_args_settings() def save_args_settings(): global args settings = { 'listen': None if not args.listen else args.listen, 'share': args.share, 'low-vram':args.low_vram, 'check-for-updates':args.check_for_updates, 'models-from-local-only':args.models_from_local_only, 'force-cpu-for-conditioning-latents': args.force_cpu_for_conditioning_latents, 'defer-tts-load': args.defer_tts_load, 'prune-nonfinal-outputs': args.prune_nonfinal_outputs, 'device-override': args.device_override, 'sample-batch-size': args.sample_batch_size, 'embed-output-metadata': args.embed_output_metadata, 'latents-lean-and-mean': args.latents_lean_and_mean, 'voice-fixer': args.voice_fixer, 'voice-fixer-use-cuda': args.voice_fixer_use_cuda, 'concurrency-count': args.concurrency_count, 'output-sample-rate': args.output_sample_rate, 'autocalculate-voice-chunk-duration-size': args.autocalculate_voice_chunk_duration_size, 'output-volume': args.output_volume, 'autoregressive-model': args.autoregressive_model, 'vocoder-model': args.vocoder_model, 'whisper-backend': args.whisper_backend, 'whisper-model': args.whisper_model, 'training-default-halfp': args.training_default_halfp, 'training-default-bnb': args.training_default_bnb, } os.makedirs('./config/', exist_ok=True) with open(f'./config/exec.json', 'w', encoding="utf-8") as f: f.write(json.dumps(settings, indent='\t') ) # super kludgy )`; def set_generate_settings_arg_order(args): global GENERATE_SETTINGS_ARGS GENERATE_SETTINGS_ARGS = args def import_generate_settings(file="./config/generate.json"): global GENERATE_SETTINGS_ARGS defaults = { 'text': None, 'delimiter': None, 'emotion': None, 'prompt': None, 'voice': None, 'mic_audio': None, 'voice_latents_chunks': None, 'candidates': None, 'seed': None, 'num_autoregressive_samples': 16, 'diffusion_iterations': 30, 'temperature': 0.8, 'diffusion_sampler': "DDIM", 'breathing_room': 8 , 'cvvp_weight': 0.0, 'top_p': 0.8, 'diffusion_temperature': 1.0, 'length_penalty': 1.0, 'repetition_penalty': 2.0, 'cond_free_k': 2.0, 'experimentals': None, } settings, _ = read_generate_settings(file, read_latents=False) res = [] if GENERATE_SETTINGS_ARGS is not None: for k in GENERATE_SETTINGS_ARGS: if k not in defaults: continue res.append(defaults[k] if not settings or k not in settings or not settings[k] is None else settings[k]) else: for k in defaults: res.append(defaults[k] if not settings or k not in settings or not settings[k] is None else settings[k]) return tuple(res) def reset_generation_settings(): with open(f'./config/generate.json', 'w', encoding="utf-8") as f: f.write(json.dumps({}, indent='\t') ) return import_generate_settings() def read_generate_settings(file, read_latents=True): j = None latents = None if isinstance(file, list) and len(file) == 1: file = file[0] try: if file is not None: if hasattr(file, 'name'): file = file.name if file[-4:] == ".wav": metadata = music_tag.load_file(file) if 'lyrics' in metadata: j = json.loads(str(metadata['lyrics'])) elif file[-5:] == ".json": with open(file, 'r') as f: j = json.load(f) except Exception as e: pass if j is not None: if 'latents' in j: if read_latents: latents = base64.b64decode(j['latents']) del j['latents'] if "time" in j: j["time"] = "{:.3f}".format(j["time"]) return ( j, latents, ) def version_check_tts( min_version ): global tts if not tts: raise Exception("TTS is not initialized") if not hasattr(tts, 'version'): return False if min_version[0] > tts.version[0]: return True if min_version[1] > tts.version[1]: return True if min_version[2] >= tts.version[2]: return True return False def load_tts( restart=False, autoregressive_model=None ): global args global tts if restart: unload_tts() if autoregressive_model: args.autoregressive_model = autoregressive_model else: autoregressive_model = args.autoregressive_model if autoregressive_model == "auto": autoregressive_model = deduce_autoregressive_model() print(f"Loading TorToiSe... (AR: {autoregressive_model}, vocoder: {args.vocoder_model})") tts_loading = True try: tts = TextToSpeech(minor_optimizations=not args.low_vram, autoregressive_model_path=autoregressive_model, vocoder_model=args.vocoder_model) except Exception as e: tts = TextToSpeech(minor_optimizations=not args.low_vram) load_autoregressive_model(autoregressive_model) tts_loading = False get_model_path('dvae.pth') print("Loaded TorToiSe, ready for generation.") return tts setup_tortoise = load_tts def unload_tts(): global tts if tts: del tts tts = None print("Unloaded TTS") do_gc() def reload_tts( model=None ): load_tts( restart=True, model=model ) def get_current_voice(): global current_voice if current_voice: return current_voice settings, _ = read_generate_settings("./config/generate.json", read_latents=False) if settings and "voice" in settings['voice']: return settings["voice"] return None def deduce_autoregressive_model(voice=None): if not voice: voice = get_current_voice() if voice: if os.path.exists(f'./models/finetunes/{voice}.pth'): return f'./models/finetunes/{voice}.pth' dir = f'./training/{voice}/finetune/models/' if os.path.isdir(dir): counts = sorted([ int(d[:-8]) for d in os.listdir(dir) if d[-8:] == "_gpt.pth" ]) names = [ f'{dir}/{d}_gpt.pth' for d in counts ] return names[-1] if args.autoregressive_model != "auto": return args.autoregressive_model return get_model_path('autoregressive.pth') def update_autoregressive_model(autoregressive_model_path): match = re.findall(r'^\[[a-fA-F0-9]{8}\] (.+?)$', autoregressive_model_path) if match: autoregressive_model_path = match[0] if not autoregressive_model_path or not os.path.exists(autoregressive_model_path): print(f"Invalid model: {autoregressive_model_path}") return args.autoregressive_model = autoregressive_model_path save_args_settings() print(f'Stored autoregressive model to settings: {autoregressive_model_path}') global tts if not tts: if tts_loading: raise Exception("TTS is still initializing...") return if hasattr(tts, "loading") and tts.loading: raise Exception("TTS is still initializing...") if autoregressive_model_path == "auto": autoregressive_model_path = deduce_autoregressive_model() if autoregressive_model_path == tts.autoregressive_model_path: return tts.load_autoregressive_model(autoregressive_model_path) do_gc() return autoregressive_model_path def update_vocoder_model(vocoder_model): args.vocoder_model = vocoder_model save_args_settings() print(f'Stored vocoder model to settings: {vocoder_model}') global tts if not tts: if tts_loading: raise Exception("TTS is still initializing...") return if hasattr(tts, "loading") and tts.loading: raise Exception("TTS is still initializing...") print(f"Loading model: {vocoder_model}") tts.load_vocoder_model(vocoder_model) print(f"Loaded model: {tts.vocoder_model}") do_gc() return vocoder_model def load_voicefixer(restart=False): global voicefixer if restart: unload_voicefixer() try: print("Loading Voicefixer") from voicefixer import VoiceFixer voicefixer = VoiceFixer() print("Loaded Voicefixer") except Exception as e: print(f"Error occurred while tring to initialize voicefixer: {e}") if voicefixer: del voicefixer voicefixer = None def unload_voicefixer(): global voicefixer if voicefixer: del voicefixer voicefixer = None print("Unloaded Voicefixer") do_gc() def load_whisper_model(language=None, model_name=None, progress=None): global whisper_model if args.whisper_backend not in WHISPER_BACKENDS: raise Exception(f"unavailable backend: {args.whisper_backend}") if args.whisper_backend != "m-bain/whisperx" and model_name == "large-v2": raise Exception("large-v2 is only available for m-bain/whisperx backend") if not model_name: model_name = args.whisper_model else: args.whisper_model = model_name save_args_settings() if language and f'{model_name}.{language}' in WHISPER_SPECIALIZED_MODELS: model_name = f'{model_name}.{language}' print(f"Loading specialized model for language: {language}") notify_progress(f"Loading Whisper model: {model_name}", progress) if args.whisper_backend == "openai/whisper": import whisper whisper_model = whisper.load_model(model_name) elif args.whisper_backend == "lightmare/whispercpp": from whispercpp import Whisper if not language: language = 'auto' b_lang = language.encode('ascii') whisper_model = Whisper(model_name, models_dir='./models/', language=b_lang) elif args.whisper_backend == "m-bain/whisperx": import whisperx device = "cuda" if get_device_name() == "cuda" else "cpu" whisper_model = whisperx.load_model(model_name, device) print("Loaded Whisper model") def unload_whisper(): global whisper_model if whisper_model: del whisper_model whisper_model = None print("Unloaded Whisper") do_gc()