import os if 'XDG_CACHE_HOME' not in os.environ: os.environ['XDG_CACHE_HOME'] = os.path.realpath(os.path.join(os.getcwd(), './models/')) if 'TORTOISE_MODELS_DIR' not in os.environ: os.environ['TORTOISE_MODELS_DIR'] = os.path.realpath(os.path.join(os.getcwd(), './models/tortoise/')) if 'TRANSFORMERS_CACHE' not in os.environ: os.environ['TRANSFORMERS_CACHE'] = os.path.realpath(os.path.join(os.getcwd(), './models/transformers/')) import argparse import time import json import base64 import re import urllib.request import signal import gc import subprocess import psutil import yaml import hashlib import tqdm import torch import torchaudio import music_tag import gradio as gr import gradio.utils import pandas as pd from datetime import datetime from datetime import timedelta from tortoise.api import TextToSpeech, MODELS, get_model_path, pad_or_truncate from tortoise.utils.audio import load_audio, load_voice, load_voices, get_voice_dir, get_voices from tortoise.utils.text import split_and_recombine_text from tortoise.utils.device import get_device_name, set_device_name, get_device_count, get_device_vram, do_gc MODELS['dvae.pth'] = "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/3704aea61678e7e468a06d8eea121dba368a798e/.models/dvae.pth" WHISPER_MODELS = ["tiny", "base", "small", "medium", "large"] WHISPER_SPECIALIZED_MODELS = ["tiny.en", "base.en", "small.en", "medium.en"] WHISPER_BACKENDS = ["openai/whisper", "lightmare/whispercpp"] VOCODERS = ['univnet', 'bigvgan_base_24khz_100band', 'bigvgan_24khz_100band'] GENERATE_SETTINGS_ARGS = None LEARNING_RATE_SCHEMES = {"Multistep": "MultiStepLR", "Cos. Annealing": "CosineAnnealingLR_Restart"} LEARNING_RATE_SCHEDULE = [ 9, 18, 25, 33 ] args = None tts = None tts_loading = False webui = None voicefixer = None whisper_model = None training_state = None current_voice = None def generate(**kwargs): parameters = {} parameters.update(kwargs) voice = parameters['voice'] progress = parameters['progress'] if 'progress' in parameters else None if parameters['seed'] == 0: parameters['seed'] = None usedSeed = parameters['seed'] global args global tts unload_whisper() unload_voicefixer() if not tts: # should check if it's loading or unloaded, and load it if it's unloaded if tts_loading: raise Exception("TTS is still initializing...") if progress is not None: progress(0, "Initializing TTS...") load_tts() if hasattr(tts, "loading") and tts.loading: raise Exception("TTS is still initializing...") do_gc() voice_samples = None conditioning_latents =None sample_voice = None voice_cache = {} def fetch_voice( voice ): cache_key = f'{voice}:{tts.autoregressive_model_hash[:8]}' if cache_key in voice_cache: return voice_cache[cache_key] print(f"Loading voice: {voice} with model {tts.autoregressive_model_hash[:8]}") sample_voice = None if voice == "microphone": if parameters['mic_audio'] is None: raise Exception("Please provide audio from mic when choosing `microphone` as a voice input") voice_samples, conditioning_latents = [load_audio(parameters['mic_audio'], tts.input_sample_rate)], None elif voice == "random": voice_samples, conditioning_latents = None, tts.get_random_conditioning_latents() else: if progress is not None: progress(0, desc=f"Loading voice: {voice}") voice_samples, conditioning_latents = load_voice(voice, model_hash=tts.autoregressive_model_hash) if voice_samples and len(voice_samples) > 0: if conditioning_latents is None: conditioning_latents = compute_latents(voice=voice, voice_samples=voice_samples, voice_latents_chunks=parameters['voice_latents_chunks']) sample_voice = torch.cat(voice_samples, dim=-1).squeeze().cpu() voice_samples = None voice_cache[cache_key] = (voice_samples, conditioning_latents, sample_voice) return voice_cache[cache_key] def get_settings( override=None ): settings = { 'temperature': float(parameters['temperature']), 'top_p': float(parameters['top_p']), 'diffusion_temperature': float(parameters['diffusion_temperature']), 'length_penalty': float(parameters['length_penalty']), 'repetition_penalty': float(parameters['repetition_penalty']), 'cond_free_k': float(parameters['cond_free_k']), 'num_autoregressive_samples': parameters['num_autoregressive_samples'], 'sample_batch_size': args.sample_batch_size, 'diffusion_iterations': parameters['diffusion_iterations'], 'voice_samples': None, 'conditioning_latents': None, 'use_deterministic_seed': parameters['seed'], 'return_deterministic_state': True, 'k': parameters['candidates'], 'diffusion_sampler': parameters['diffusion_sampler'], 'breathing_room': parameters['breathing_room'], 'progress': parameters['progress'], 'half_p': "Half Precision" in parameters['experimentals'], 'cond_free': "Conditioning-Free" in parameters['experimentals'], 'cvvp_amount': parameters['cvvp_weight'], 'autoregressive_model': args.autoregressive_model, } # could be better to just do a ternary on everything above, but i am not a professional selected_voice = voice if override is not None: if 'voice' in override: selected_voice = override['voice'] for k in override: if k not in settings: continue settings[k] = override[k] if settings['autoregressive_model'] is not None: if settings['autoregressive_model'] == "auto": settings['autoregressive_model'] = deduce_autoregressive_model(selected_voice) tts.load_autoregressive_model(settings['autoregressive_model']) settings['voice_samples'], settings['conditioning_latents'], _ = fetch_voice(voice=selected_voice) # clamp it down for the insane users who want this # it would be wiser to enforce the sample size to the batch size, but this is what the user wants settings['sample_batch_size'] = args.sample_batch_size if not settings['sample_batch_size']: settings['sample_batch_size'] = tts.autoregressive_batch_size if settings['num_autoregressive_samples'] < settings['sample_batch_size']: settings['sample_batch_size'] = settings['num_autoregressive_samples'] if settings['conditioning_latents'] is not None and len(settings['conditioning_latents']) == 2 and settings['cvvp_amount'] > 0: print("Requesting weighing against CVVP weight, but voice latents are missing some extra data. Please regenerate your voice latents with 'Slimmer voice latents' unchecked.") settings['cvvp_amount'] = 0 return settings if not parameters['delimiter']: parameters['delimiter'] = "\n" elif parameters['delimiter'] == "\\n": parameters['delimiter'] = "\n" if parameters['delimiter'] and parameters['delimiter'] != "" and parameters['delimiter'] in parameters['text']: texts = parameters['text'].split(parameters['delimiter']) else: texts = split_and_recombine_text(parameters['text']) full_start_time = time.time() outdir = f"./results/{voice}/" os.makedirs(outdir, exist_ok=True) audio_cache = {} resample = None if tts.output_sample_rate != args.output_sample_rate: resampler = torchaudio.transforms.Resample( tts.output_sample_rate, args.output_sample_rate, lowpass_filter_width=16, rolloff=0.85, resampling_method="kaiser_window", beta=8.555504641634386, ) volume_adjust = torchaudio.transforms.Vol(gain=args.output_volume, gain_type="amplitude") if args.output_volume != 1 else None idx = 0 idx_cache = {} for i, file in enumerate(os.listdir(outdir)): filename = os.path.basename(file) extension = os.path.splitext(filename)[1] if extension != ".json" and extension != ".wav": continue match = re.findall(rf"^{voice}_(\d+)(?:.+?)?{extension}$", filename) if match and len(match) > 0: key = int(match[0]) idx_cache[key] = True if len(idx_cache) > 0: keys = sorted(list(idx_cache.keys())) idx = keys[-1] + 1 idx = pad(idx, 4) def get_name(line=0, candidate=0, combined=False): name = f"{idx}" if combined: name = f"{name}_combined" elif len(texts) > 1: name = f"{name}_{line}" if parameters['candidates'] > 1: name = f"{name}_{candidate}" return name def get_info( voice, settings = None, latents = True ): info = {} info.update(parameters) info['time'] = time.time()-full_start_time info['datetime'] = datetime.now().isoformat() info['model'] = tts.autoregressive_model_path info['model_hash'] = tts.autoregressive_model_hash info['progress'] = None del info['progress'] if info['delimiter'] == "\n": info['delimiter'] = "\\n" if settings is not None: for k in settings: if k in info: info[k] = settings[k] if 'half_p' in settings and 'cond_free' in settings: info['experimentals'] = [] if settings['half_p']: info['experimentals'].append("Half Precision") if settings['cond_free']: info['experimentals'].append("Conditioning-Free") if latents and "latents" not in info: voice = info['voice'] model_hash = settings["model_hash"][:8] if settings is not None and "model_hash" in settings else tts.autoregressive_model_hash[:8] dir = f'{get_voice_dir()}/{voice}/' latents_path = f'{dir}/cond_latents_{model_hash}.pth' if voice == "random" or voice == "microphone": if latents and settings is not None and settings['conditioning_latents']: os.makedirs(dir, exist_ok=True) torch.save(conditioning_latents, latents_path) if latents_path and os.path.exists(latents_path): try: with open(latents_path, 'rb') as f: info['latents'] = base64.b64encode(f.read()).decode("ascii") except Exception as e: pass return info for line, cut_text in enumerate(texts): if parameters['emotion'] == "Custom": if parameters['prompt'] and parameters['prompt'].strip() != "": cut_text = f"[{parameters['prompt']},] {cut_text}" elif parameters['emotion'] != "None" and parameters['emotion']: cut_text = f"[I am really {parameters['emotion'].lower()},] {cut_text}" progress.msg_prefix = f'[{str(line+1)}/{str(len(texts))}]' print(f"{progress.msg_prefix} Generating line: {cut_text}") start_time = time.time() # do setting editing match = re.findall(r'^(\{.+\}) (.+?)$', cut_text) override = None if match and len(match) > 0: match = match[0] try: override = json.loads(match[0]) cut_text = match[1].strip() except Exception as e: raise Exception("Prompt settings editing requested, but received invalid JSON") settings = get_settings( override=override ) gen, additionals = tts.tts(cut_text, **settings ) parameters['seed'] = additionals[0] run_time = time.time()-start_time print(f"Generating line took {run_time} seconds") if not isinstance(gen, list): gen = [gen] for j, g in enumerate(gen): audio = g.squeeze(0).cpu() name = get_name(line=line, candidate=j) settings['text'] = cut_text settings['time'] = run_time settings['datetime'] = datetime.now().isoformat(), settings['model'] = tts.autoregressive_model_path settings['model_hash'] = tts.autoregressive_model_hash audio_cache[name] = { 'audio': audio, 'settings': get_info(voice=override['voice'] if override and 'voice' in override else voice, settings=settings) } # save here in case some error happens mid-batch torchaudio.save(f'{outdir}/{voice}_{name}.wav', audio, tts.output_sample_rate) del gen do_gc() for k in audio_cache: audio = audio_cache[k]['audio'] if resampler is not None: audio = resampler(audio) if volume_adjust is not None: audio = volume_adjust(audio) audio_cache[k]['audio'] = audio torchaudio.save(f'{outdir}/{voice}_{k}.wav', audio, args.output_sample_rate) output_voices = [] for candidate in range(parameters['candidates']): if len(texts) > 1: audio_clips = [] for line in range(len(texts)): name = get_name(line=line, candidate=candidate) audio = audio_cache[name]['audio'] audio_clips.append(audio) name = get_name(candidate=candidate, combined=True) audio = torch.cat(audio_clips, dim=-1) torchaudio.save(f'{outdir}/{voice}_{name}.wav', audio, args.output_sample_rate) audio = audio.squeeze(0).cpu() audio_cache[name] = { 'audio': audio, 'settings': get_info(voice=voice), 'output': True } else: name = get_name(candidate=candidate) audio_cache[name]['output'] = True if args.voice_fixer: if not voicefixer: progress(0, "Loading voicefix...") load_voicefixer() try: fixed_cache = {} for name in progress.tqdm(audio_cache, desc="Running voicefix..."): del audio_cache[name]['audio'] if 'output' not in audio_cache[name] or not audio_cache[name]['output']: continue path = f'{outdir}/{voice}_{name}.wav' fixed = f'{outdir}/{voice}_{name}_fixed.wav' voicefixer.restore( input=path, output=fixed, cuda=get_device_name() == "cuda" and args.voice_fixer_use_cuda, #mode=mode, ) fixed_cache[f'{name}_fixed'] = { 'settings': audio_cache[name]['settings'], 'output': True } audio_cache[name]['output'] = False for name in fixed_cache: audio_cache[name] = fixed_cache[name] except Exception as e: print(e) print("\nFailed to run Voicefixer") for name in audio_cache: if 'output' not in audio_cache[name] or not audio_cache[name]['output']: if args.prune_nonfinal_outputs: audio_cache[name]['pruned'] = True os.remove(f'{outdir}/{voice}_{name}.wav') continue output_voices.append(f'{outdir}/{voice}_{name}.wav') if not args.embed_output_metadata: with open(f'{outdir}/{voice}_{name}.json', 'w', encoding="utf-8") as f: f.write(json.dumps(audio_cache[name]['settings'], indent='\t') ) if args.embed_output_metadata: for name in progress.tqdm(audio_cache, desc="Embedding metadata..."): if 'pruned' in audio_cache[name] and audio_cache[name]['pruned']: continue metadata = music_tag.load_file(f"{outdir}/{voice}_{name}.wav") metadata['lyrics'] = json.dumps(audio_cache[name]['settings']) metadata.save() if sample_voice is not None: sample_voice = (tts.input_sample_rate, sample_voice.numpy()) info = get_info(voice=voice, latents=False) print(f"Generation took {info['time']} seconds, saved to '{output_voices[0]}'\n") info['seed'] = usedSeed if 'latents' in info: del info['latents'] os.makedirs('./config/', exist_ok=True) with open(f'./config/generate.json', 'w', encoding="utf-8") as f: f.write(json.dumps(info, indent='\t') ) stats = [ [ parameters['seed'], "{:.3f}".format(info['time']) ] ] return ( sample_voice, output_voices, stats, ) def cancel_generate(): import tortoise.api tortoise.api.STOP_SIGNAL = True def hash_file(path, algo="md5", buffer_size=0): hash = None if algo == "md5": hash = hashlib.md5() elif algo == "sha1": hash = hashlib.sha1() else: raise Exception(f'Unknown hash algorithm specified: {algo}') if not os.path.exists(path): raise Exception(f'Path not found: {path}') with open(path, 'rb') as f: if buffer_size > 0: while True: data = f.read(buffer_size) if not data: break hash.update(data) else: hash.update(f.read()) return "{0}".format(hash.hexdigest()) def update_baseline_for_latents_chunks( voice ): global current_voice current_voice = voice path = f'{get_voice_dir()}/{voice}/' if not os.path.isdir(path): return 1 dataset_file = f'./training/{voice}/train.txt' if os.path.exists(dataset_file): return 0 # 0 will leverage using the LJspeech dataset for computing latents files = os.listdir(path) total = 0 total_duration = 0 for file in files: if file[-4:] != ".wav": continue metadata = torchaudio.info(f'{path}/{file}') duration = metadata.num_channels * metadata.num_frames / metadata.sample_rate total_duration += duration total = total + 1 # brain too fried to figure out a better way if args.autocalculate_voice_chunk_duration_size == 0: return int(total_duration / total) if total > 0 else 1 return int(total_duration / args.autocalculate_voice_chunk_duration_size) if total_duration > 0 else 1 def compute_latents(voice=None, voice_samples=None, voice_latents_chunks=0, progress=None): global tts global args unload_whisper() unload_voicefixer() if not tts: if tts_loading: raise Exception("TTS is still initializing...") load_tts() if hasattr(tts, "loading") and tts.loading: raise Exception("TTS is still initializing...") if args.autoregressive_model == "auto": tts.load_autoregressive_model(deduce_autoregressive_model(voice)) if voice: load_from_dataset = voice_latents_chunks == 0 if load_from_dataset: dataset_path = f'./training/{voice}/train.txt' if not os.path.exists(dataset_path): load_from_dataset = False else: with open(dataset_path, 'r', encoding="utf-8") as f: lines = f.readlines() print("Leveraging dataset for computing latents") voice_samples = [] max_length = 0 for line in lines: filename = f'./training/{voice}/{line.split("|")[0]}' waveform = load_audio(filename, 22050) max_length = max(max_length, waveform.shape[-1]) voice_samples.append(waveform) for i in range(len(voice_samples)): voice_samples[i] = pad_or_truncate(voice_samples[i], max_length) voice_latents_chunks = len(voice_samples) if voice_latents_chunks == 0: print("Dataset is empty!") load_from_dataset = True if not load_from_dataset: voice_samples, _ = load_voice(voice, load_latents=False) if voice_samples is None: return conditioning_latents = tts.get_conditioning_latents(voice_samples, return_mels=not args.latents_lean_and_mean, slices=voice_latents_chunks, force_cpu=args.force_cpu_for_conditioning_latents, progress=progress) if len(conditioning_latents) == 4: conditioning_latents = (conditioning_latents[0], conditioning_latents[1], conditioning_latents[2], None) outfile = f'{get_voice_dir()}/{voice}/cond_latents_{tts.autoregressive_model_hash[:8]}.pth' torch.save(conditioning_latents, outfile) print(f'Saved voice latents: {outfile}') return conditioning_latents # superfluous, but it cleans up some things class TrainingState(): def __init__(self, config_path, keep_x_past_checkpoints=0, start=True): # parse config to get its iteration with open(config_path, 'r') as file: self.config = yaml.safe_load(file) gpus = self.config["gpus"] self.killed = False self.dataset_dir = f"./training/{self.config['name']}/finetune/" self.batch_size = self.config['datasets']['train']['batch_size'] self.dataset_path = self.config['datasets']['train']['path'] with open(self.dataset_path, 'r', encoding="utf-8") as f: self.dataset_size = len(f.readlines()) self.it = 0 self.its = self.config['train']['niter'] self.step = 0 self.steps = 1 self.epoch = 0 self.epochs = int(self.its*self.batch_size/self.dataset_size) self.checkpoint = 0 self.checkpoints = int(self.its / self.config['logger']['save_checkpoint_freq']) self.buffer = [] self.open_state = False self.training_started = False self.info = {} self.it_rate = "" self.it_rates = 0 self.epoch_rate = "" self.eta = "?" self.eta_hhmmss = "?" self.nan_detected = False self.last_info_check_at = 0 self.statistics = { 'loss': [], 'lr': [], } self.losses = [] self.metrics = { 'step': "", 'rate': "", 'loss': "", } self.loss_milestones = [ 1.0, 0.15, 0.05 ] if keep_x_past_checkpoints > 0: self.cleanup_old(keep=keep_x_past_checkpoints) if start: self.spawn_process(config_path=config_path, gpus=gpus) def spawn_process(self, config_path, gpus=1): self.cmd = ['train.bat', config_path] if os.name == "nt" else ['./train.sh', config_path] print("Spawning process: ", " ".join(self.cmd)) self.process = subprocess.Popen(self.cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True) def parse_metrics(self, data): if isinstance(data, str): if line.find('INFO: Training Metrics:') >= 0: data = json.loads(line.split("INFO: Training Metrics:")[-1]) data['mode'] = "training" elif line.find('INFO: Validation Metrics:') >= 0: data = json.loads(line.split("INFO: Validation Metrics:")[-1]) data['mode'] = "validation" else: return self.info = data if 'epoch' in self.info: self.epoch = int(self.info['epoch']) if 'it' in self.info: self.it = int(self.info['it']) if 'step' in self.info: self.step = int(self.info['step']) if 'steps' in self.info: self.steps = int(self.info['steps']) if 'iteration_rate' in self.info: it_rate = self.info['iteration_rate'] * self.batch_size # why self.it_rate = f'{"{:.3f}".format(1/it_rate)}it/s' if 0 < it_rate and it_rate < 1 else f'{"{:.3f}".format(it_rate)}s/it' self.it_rates += it_rate epoch_rate = self.it_rates / self.it * self.steps if epoch_rate > 0: self.epoch_rate = f'{"{:.3f}".format(1/epoch_rate)}epoch/s' if 0 < epoch_rate and epoch_rate < 1 else f'{"{:.3f}".format(epoch_rate)}s/epoch' try: self.eta = (self.its - self.it) * (self.it_rates / self.it) eta = str(timedelta(seconds=int(self.eta))) self.eta_hhmmss = eta except Exception as e: self.eta_hhmmss = "?" pass self.metrics['step'] = [f"{self.epoch}/{self.epochs}"] if self.epochs != self.its: self.metrics['step'].append(f"{self.it}/{self.its}") if self.steps > 1: self.metrics['step'].append(f"{self.step}/{self.steps}") self.metrics['step'] = ", ".join(self.metrics['step']) epoch = self.epoch + (self.step / self.steps) if 'lr' in self.info: self.statistics['lr'].append({'epoch': epoch, 'it': self.it, 'value': self.info['lr'], 'type': 'learning_rate'}) for k in ['loss_text_ce', 'loss_mel_ce', 'loss_gpt_total']: if k not in self.info: continue if k == "loss_gpt_total": self.losses.append( self.statistics['loss'][-1] ) else: self.statistics['loss'].append({'epoch': epoch, 'it': self.it, 'value': self.info[k], 'type': f'{"val_" if data["mode"] == "validation" else ""}{k}' }) return data def get_status(self): message = None self.metrics['rate'] = [] if self.epoch_rate: self.metrics['rate'].append(self.epoch_rate) if self.it_rate and self.epoch_rate[:-7] != self.it_rate[:-4]: self.metrics['rate'].append(self.it_rate) self.metrics['rate'] = ", ".join(self.metrics['rate']) eta_hhmmss = self.eta_hhmmss if self.eta_hhmmss else "?" self.metrics['loss'] = [] if 'lr' in self.info: self.metrics['loss'].append(f'LR: {"{:.3e}".format(self.info["lr"])}') if len(self.losses) > 0: self.metrics['loss'].append(f'Loss: {"{:.3f}".format(self.losses[-1]["value"])}') if False and len(self.losses) >= 2: deriv = 0 accum_length = len(self.losses)//2 # i *guess* this is fine when you think about it loss_value = self.losses[-1]["value"] for i in range(accum_length): d1_loss = self.losses[accum_length-i-1]["value"] d2_loss = self.losses[accum_length-i-2]["value"] dloss = (d2_loss - d1_loss) d1_step = self.losses[accum_length-i-1]["it"] d2_step = self.losses[accum_length-i-2]["it"] dstep = (d2_step - d1_step) if dstep == 0: continue inst_deriv = dloss / dstep deriv += inst_deriv deriv = deriv / accum_length print("Deriv: ", deriv) if deriv != 0: # dloss < 0: next_milestone = None for milestone in self.loss_milestones: if loss_value > milestone: next_milestone = milestone break print(f"Loss value: {loss_value} | Next milestone: {next_milestone} | Distance: {loss_value - next_milestone}") if next_milestone: # tfw can do simple calculus but not basic algebra in my head est_its = (next_milestone - loss_value) / deriv * 100 print(f"Estimated: {est_its}") if est_its >= 0: self.metrics['loss'].append(f'Est. milestone {next_milestone} in: {int(est_its)}its') else: est_loss = inst_deriv * (self.its - self.it) + loss_value if est_loss >= 0: self.metrics['loss'].append(f'Est. final loss: {"{:.3f}".format(est_loss)}') self.metrics['loss'] = ", ".join(self.metrics['loss']) message = f"[{self.metrics['step']}] [{self.metrics['rate']}] [ETA: {eta_hhmmss}] [{self.metrics['loss']}]" if self.nan_detected: message = f"[!NaN DETECTED! {self.nan_detected}] {message}" return message def load_statistics(self, update=False): if not os.path.isdir(f'{self.dataset_dir}/'): return infos = {} highest_step = self.last_info_check_at if not update: self.statistics['loss'] = [] self.statistics['lr'] = [] self.it_rates = 0 logs = sorted([f'{self.dataset_dir}/{d}' for d in os.listdir(self.dataset_dir) if d[-4:] == ".log" ]) if update: logs = [logs[-1]] for log in logs: with open(log, 'r', encoding="utf-8") as f: lines = f.readlines() for line in lines: if line.find('INFO: Training Metrics:') >= 0: data = json.loads(line.split("INFO: Training Metrics:")[-1]) data['mode'] = "training" elif line.find('INFO: Validation Metrics:') >= 0: data = json.loads(line.split("INFO: Validation Metrics:")[-1]) data['mode'] = "validation" else: continue if "it" not in data: continue it = data['it'] if update and it <= self.last_info_check_at: continue self.parse_metrics(data) print(self.get_status()) # print(f"Iterations Left: {self.its - self.it} | Elapsed Time: {self.it_rates} | Time Remaining: {self.eta} | Message: {self.get_status()}") self.last_info_check_at = highest_step def cleanup_old(self, keep=2): if keep <= 0: return if not os.path.isdir(self.dataset_dir): return models = sorted([ int(d[:-8]) for d in os.listdir(f'{self.dataset_dir}/models/') if d[-8:] == "_gpt.pth" ]) states = sorted([ int(d[:-6]) for d in os.listdir(f'{self.dataset_dir}/training_state/') if d[-6:] == ".state" ]) remove_models = models[:-keep] remove_states = states[:-keep] for d in remove_models: path = f'{self.dataset_dir}/models/{d}_gpt.pth' print("Removing", path) os.remove(path) for d in remove_states: path = f'{self.dataset_dir}/training_state/{d}.state' print("Removing", path) os.remove(path) def parse(self, line, verbose=False, keep_x_past_checkpoints=0, buffer_size=8, progress=None ): self.buffer.append(f'{line}') should_return = False percent = 0 message = None if line.find('Finished training') >= 0: self.killed = True # rip out iteration info elif not self.training_started: if line.find('Start training from epoch') >= 0: self.training_started = True # could just leverage the above variable, but this is python, and there's no point in these aggressive microoptimizations match = re.findall(r'epoch: ([\d,]+)', line) if match and len(match) > 0: self.epoch = int(match[0].replace(",", "")) match = re.findall(r'iter: ([\d,]+)', line) if match and len(match) > 0: self.it = int(match[0].replace(",", "")) self.checkpoints = int((self.its - self.it) / self.config['logger']['save_checkpoint_freq']) self.load_statistics() should_return = True else: # INFO: Training Metrics: {"loss_text_ce": 4.308311939239502, "loss_mel_ce": 2.1610655784606934, "loss_gpt_total": 2.204148769378662, "lr": 0.0001, "it": 2, "step": 1, "steps": 1, "epoch": 1, "iteration_rate": 0.10700102965037028} if line.find('INFO: Training Metrics:') >= 0: data = json.loads(line.split("INFO: Training Metrics:")[-1]) data['mode'] = "training" elif line.find('INFO: Validation Metrics:') >= 0: data = json.loads(line.split("INFO: Validation Metrics:")[-1]) data['mode'] = "validation" if data is not None: if ': nan' in line and not self.nan_detected: self.nan_detected = self.it self.parse_metrics( data ) message = self.get_status() if message: percent = self.it / float(self.its) # self.epoch / float(self.epochs) if progress is not None: progress(percent, message) self.buffer.append(f'[{"{:.3f}".format(percent*100)}%] {message}') should_return = True if verbose and not self.training_started: should_return = True self.buffer = self.buffer[-buffer_size:] result = None if should_return: result = "".join(self.buffer) if not self.training_started else message return ( result, percent, message, ) try: import altair as alt alt.data_transformers.enable('default', max_rows=None) except Exception as e: print(e) pass def run_training(config_path, verbose=False, keep_x_past_checkpoints=0, progress=gr.Progress(track_tqdm=True)): global training_state if training_state and training_state.process: return "Training already in progress" # ensure we have the dvae.pth get_model_path('dvae.pth') # I don't know if this is still necessary, as it was bitching at me for not doing this, despite it being in a separate process torch.multiprocessing.freeze_support() unload_tts() unload_whisper() unload_voicefixer() training_state = TrainingState(config_path=config_path, keep_x_past_checkpoints=keep_x_past_checkpoints) for line in iter(training_state.process.stdout.readline, ""): if training_state.killed: return result, percent, message = training_state.parse( line=line, verbose=verbose, keep_x_past_checkpoints=keep_x_past_checkpoints, progress=progress ) print(f"[Training] [{datetime.now().isoformat()}] {line[:-1]}") if result: yield result if progress is not None and message: progress(percent, message) if training_state: training_state.process.stdout.close() return_code = training_state.process.wait() training_state = None def update_training_dataplot(config_path=None): global training_state losses = None lrs = None if not training_state: if config_path: training_state = TrainingState(config_path=config_path, start=False) training_state.load_statistics() message = training_state.get_status() print(message) if len(training_state.statistics['loss']) > 0: losses = gr.LinePlot.update(value=pd.DataFrame(training_state.statistics['loss']), x_lim=[0,training_state.epochs], x="epoch", y="value", title="Loss Metrics", color="type", tooltip=['epoch', 'it', 'value', 'type'], width=500, height=350,) if len(training_state.statistics['lr']) > 0: lrs = gr.LinePlot.update(value=pd.DataFrame(training_state.statistics['lr']), x_lim=[0,training_state.epochs], x="epoch", y="value", title="Learning Rate", color="type", tooltip=['epoch', 'it', 'value', 'type'], width=500, height=350,) del training_state training_state = None else: training_state.load_statistics() if len(training_state.statistics['loss']) > 0: losses = gr.LinePlot.update(value=pd.DataFrame(training_state.statistics['loss']), x_lim=[0,training_state.epochs], x="epoch", y="value", title="Loss Metrics", color="type", tooltip=['epoch', 'it', 'value', 'type'], width=500, height=350,) if len(training_state.statistics['lr']) > 0: lrs = gr.LinePlot.update(value=pd.DataFrame(training_state.statistics['lr']), x_lim=[0,training_state.epochs], x="epoch", y="value", title="Learning Rate", color="type", tooltip=['epoch', 'it', 'value', 'type'], width=500, height=350,) return (losses, lrs) def reconnect_training(verbose=False, progress=gr.Progress(track_tqdm=True)): global training_state if not training_state or not training_state.process: return "Training not in progress" for line in iter(training_state.process.stdout.readline, ""): result, percent, message = training_state.parse( line=line, verbose=verbose, progress=progress ) print(f"[Training] [{datetime.now().isoformat()}] {line[:-1]}") if result: yield result if progress is not None and message: progress(percent, message) def stop_training(): global training_state if training_state is None: return "No training in progress" print("Killing training process...") training_state.killed = True children = [] # wrapped in a try/catch in case for some reason this fails outside of Linux try: children = [p.info for p in psutil.process_iter(attrs=['pid', 'name', 'cmdline']) if './src/train.py' in p.info['cmdline']] except Exception as e: pass training_state.process.stdout.close() training_state.process.terminate() training_state.process.kill() return_code = training_state.process.wait() for p in children: os.kill( p['pid'], signal.SIGKILL ) training_state = None print("Killed training process.") return f"Training cancelled: {return_code}" def get_halfp_model_path(): autoregressive_model_path = get_model_path('autoregressive.pth') return autoregressive_model_path.replace(".pth", "_half.pth") def convert_to_halfp(): autoregressive_model_path = get_model_path('autoregressive.pth') print(f'Converting model to half precision: {autoregressive_model_path}') model = torch.load(autoregressive_model_path) for k in model: model[k] = model[k].half() outfile = get_halfp_model_path() torch.save(model, outfile) print(f'Converted model to half precision: {outfile}') def whisper_transcribe( file, language=None ): # shouldn't happen, but it's for safety if not whisper_model: load_whisper_model(language=language) if args.whisper_backend == "openai/whisper": if not language: language = None return whisper_model.transcribe(file, language=language) if args.whisper_backend == "lightmare/whispercpp": res = whisper_model.transcribe(file) segments = whisper_model.extract_text_and_timestamps( res ) result = { 'segments': [] } for segment in segments: reparsed = { 'start': segment[0] / 100.0, 'end': segment[1] / 100.0, 'text': segment[2], } result['segments'].append(reparsed) return result def validate_waveform( waveform, sample_rate ): if not torch.any(waveform < 0): return False if waveform.shape[-1] < (.6 * sample_rate): return False return True def transcribe_dataset( voice, language=None, skip_existings=False, progress=None ): unload_tts() global whisper_model if whisper_model is None: load_whisper_model(language=language) results = {} files = sorted( get_voices(load_latents=False)[voice] ) indir = f'./training/{voice}/' infile = f'{indir}/whisper.json' os.makedirs(f'{indir}/audio/', exist_ok=True) if os.path.exists(infile): results = json.load(open(infile, 'r', encoding="utf-8")) for file in enumerate_progress(files, desc="Iterating through voice files", progress=progress): basename = os.path.basename(file) if basename in results and skip_existings: print(f"Skipping already parsed file: {basename}") continue results[basename] = whisper_transcribe(file, language=language) # lazy copy waveform, sampling_rate = torchaudio.load(file) torchaudio.save(f"{indir}/audio/{basename}", waveform, sampling_rate) with open(infile, 'w', encoding="utf-8") as f: f.write(json.dumps(results, indent='\t')) do_gc() unload_whisper() return f"Processed dataset to: {indir}" def slice_dataset( voice, trim_silence=True, start_offset=0, end_offset=0 ): indir = f'./training/{voice}/' infile = f'{indir}/whisper.json' if not os.path.exists(infile): raise Exception(f"Missing dataset: {infile}") results = json.load(open(infile, 'r', encoding="utf-8")) files = 0 segments = 0 for filename in results: files += 1 result = results[filename] waveform, sampling_rate = torchaudio.load(f'./voices/{voice}/{filename}') for segment in result['segments']: # enumerate_progress(result['segments'], desc="Segmenting voice file", progress=progress): segments +=1 start = int((segment['start'] + start_offset) * sampling_rate) end = int((segment['end'] + end_offset) * sampling_rate) if start < 0: start = 0 if end >= waveform.shape[-1]: end = waveform.shape[-1] - 1 sliced = waveform[:, start:end] file = filename.replace(".wav", f"_{pad(segment['id'], 4)}.wav") if not validate_waveform( sliced, sampling_rate ): print(f"Invalid waveform segment ({segment['start']}:{segment['end']}): {file}, skipping...") continue if trim_silence: sliced = torchaudio.functional.vad( sliced, sampling_rate ) torchaudio.save(f"{indir}/audio/{file}", sliced, sampling_rate) return f"Sliced segments: {files} => {segments}." def prepare_dataset( voice, use_segments, text_length, audio_length ): indir = f'./training/{voice}/' infile = f'{indir}/whisper.json' if not os.path.exists(infile): raise Exception(f"Missing dataset: {infile}") results = json.load(open(infile, 'r', encoding="utf-8")) lines = { 'training': [], 'validation': [], } for filename in results: result = results[filename] segments = result['segments'] if use_segments else [{'text': result['text']}] for segment in segments: text = segment['text'].strip() file = filename.replace(".wav", f"_{pad(segment['id'], 4)}.wav") if use_segments else filename path = f'{indir}/audio/{file}' if not os.path.exists(path): continue culled = len(text) < text_length if not culled and audio_length > 0: metadata = torchaudio.info(path) duration = metadata.num_channels * metadata.num_frames / metadata.sample_rate culled = duration < audio_length lines['training' if not culled else 'validation'].append(f'audio/{file}|{text}') training_joined = "\n".join(lines['training']) validation_joined = "\n".join(lines['validation']) with open(f'{indir}/train.txt', 'w', encoding="utf-8") as f: f.write(training_joined) with open(f'{indir}/validation.txt', 'w', encoding="utf-8") as f: f.write(validation_joined) msg = f"Prepared {len(lines['training'])} lines (validation: {len(lines['validation'])}).\n{training_joined}\n\n{validation_joined}" return msg def calc_iterations( epochs, lines, batch_size ): iterations = int(epochs * lines / float(batch_size)) return iterations def schedule_learning_rate( iterations, schedule=LEARNING_RATE_SCHEDULE ): return [int(iterations * d) for d in schedule] def optimize_training_settings( **kwargs ): messages = [] settings = {} settings.update(kwargs) dataset_path = f"./training/{settings['voice']}/train.txt" with open(dataset_path, 'r', encoding="utf-8") as f: lines = len(f.readlines()) if settings['batch_size'] > lines: settings['batch_size'] = lines messages.append(f"Batch size is larger than your dataset, clamping batch size to: {settings['batch_size']}") """ if lines % settings['batch_size'] != 0: settings['batch_size'] = int(lines / settings['batch_size']) if settings['batch_size'] == 0: settings['batch_size'] = 1 messages.append(f"Batch size not neatly divisible by dataset size, adjusting batch size to: {settings['batch_size']}") """ if settings['gradient_accumulation_size'] == 0: settings['gradient_accumulation_size'] = 1 if settings['batch_size'] / settings['gradient_accumulation_size'] < 2: settings['gradient_accumulation_size'] = int(settings['batch_size'] / 2) if settings['gradient_accumulation_size'] == 0: settings['gradient_accumulation_size'] = 1 messages.append(f"Gradient accumulation size is too large for a given batch size, clamping gradient accumulation size to: {settings['gradient_accumulation_size']}") elif settings['batch_size'] % settings['gradient_accumulation_size'] != 0: settings['gradient_accumulation_size'] -= settings['batch_size'] % settings['gradient_accumulation_size'] if settings['gradient_accumulation_size'] == 0: settings['gradient_accumulation_size'] = 1 messages.append(f"Batch size is not evenly divisible by the gradient accumulation size, adjusting gradient accumulation size to: {settings['gradient_accumulation_size']}") if settings['batch_size'] % settings['gpus'] != 0: settings['batch_size'] -= settings['batch_size'] % settings['gpus'] if settings['batch_size'] == 0: settings['batch_size'] = 1 messages.append(f"Batch size not neatly divisible by GPU count, adjusting batch size to: {settings['batch_size']}") def get_device_batch_size( vram ): DEVICE_BATCH_SIZE_MAP = [ (32, 64), # based on my two 6800XTs, I can only really safely get a ratio of 156:2 = 78 (16, 8), # based on an A4000, I can do a ratio of 512:64 = 8:1 (8, 4), # interpolated (6, 2), # based on my 2060, it only really lets me have a batch ratio of 2:1 ] for k, v in DEVICE_BATCH_SIZE_MAP: if vram > (k-1): return v return 1 if settings['gpus'] > get_device_count(): settings['gpus'] = get_device_count() messages.append(f"GPU count exceeds defacto GPU count, clamping to: {settings['gpus']}") if settings['gpus'] <= 1: settings['gpus'] = 1 else: messages.append(f"! EXPERIMENTAL ! Multi-GPU training is extremely particular, expect issues.") # assuming you have equal GPUs vram = get_device_vram() * settings['gpus'] batch_ratio = int(settings['batch_size'] / settings['gradient_accumulation_size']) batch_cap = get_device_batch_size(vram) if batch_ratio > batch_cap: settings['gradient_accumulation_size'] = int(settings['batch_size'] / batch_cap) messages.append(f"Batch ratio ({batch_ratio}) is expected to exceed your VRAM capacity ({'{:.3f}'.format(vram)}GB, suggested {batch_cap} batch size cap), adjusting gradient accumulation size to: {settings['gradient_accumulation_size']}") iterations = calc_iterations(epochs=settings['epochs'], lines=lines, batch_size=settings['batch_size']) if settings['epochs'] < settings['save_rate']: settings['save_rate'] = settings['epochs'] messages.append(f"Save rate is too small for the given iteration step, clamping save rate to: {settings['save_rate']}") if settings['epochs'] < settings['validation_rate']: settings['validation_rate'] = settings['epochs'] messages.append(f"Validation rate is too small for the given iteration step, clamping validation rate to: {settings['validation_rate']}") if settings['resume_state'] and not os.path.exists(settings['resume_state']): settings['resume_state'] = None messages.append("Resume path specified, but does not exist. Disabling...") if settings['bitsandbytes']: messages.append("! EXPERIMENTAL ! BitsAndBytes requested.") if settings['half_p']: if settings['bitsandbytes']: settings['half_p'] = False messages.append("Half Precision requested, but BitsAndBytes is also requested. Due to redundancies, disabling half precision...") else: messages.append("! EXPERIMENTAL ! Half Precision requested.") if not os.path.exists(get_halfp_model_path()): convert_to_halfp() messages.append(f"For {settings['epochs']} epochs with {lines} lines in batches of {settings['batch_size']}, iterating for {iterations} steps ({int(iterations / settings['epochs'])} steps per epoch)") return settings, messages def save_training_settings( **kwargs ): messages = [] settings = {} settings.update(kwargs) outjson = f'./training/{settings["voice"]}/train.json' with open(outjson, 'w', encoding="utf-8") as f: f.write(json.dumps(settings, indent='\t') ) settings['dataset_path'] = f"./training/{settings['voice']}/train.txt" settings['validation_path'] = f"./training/{settings['voice']}/validation.txt" with open(settings['dataset_path'], 'r', encoding="utf-8") as f: lines = len(f.readlines()) if not settings['source_model'] or settings['source_model'] == "auto": settings['source_model'] = f"./models/tortoise/autoregressive{'_half' if settings['half_p'] else ''}.pth" if settings['half_p']: if not os.path.exists(get_halfp_model_path()): convert_to_halfp() settings['iterations'] = calc_iterations(epochs=settings['epochs'], lines=lines, batch_size=settings['batch_size']) messages.append(f"For {settings['epochs']} epochs with {lines} lines, iterating for {settings['iterations']} steps") iterations_per_epoch = settings['iterations'] / settings['epochs'] settings['save_rate'] = int(settings['save_rate'] * iterations_per_epoch) settings['validation_rate'] = int(settings['validation_rate'] * iterations_per_epoch) iterations_per_epoch = int(iterations_per_epoch) if settings['save_rate'] < 1: settings['save_rate'] = 1 if settings['validation_rate'] < 1: settings['validation_rate'] = 1 settings['validation_batch_size'] = int(settings['batch_size'] / settings['gradient_accumulation_size']) settings['iterations'] = calc_iterations(epochs=settings['epochs'], lines=lines, batch_size=settings['batch_size']) if settings['iterations'] % settings['save_rate'] != 0: adjustment = int(settings['iterations'] / settings['save_rate']) * settings['save_rate'] messages.append(f"Iteration rate is not evenly divisible by save rate, adjusting: {settings['iterations']} => {adjustment}") settings['iterations'] = adjustment if not os.path.exists(settings['validation_path']): settings['validation_enabled'] = False messages.append("Validation not found, disabling validation...") elif settings['validation_batch_size'] == 0: settings['validation_enabled'] = False messages.append("Validation batch size == 0, disabling validation...") else: settings['validation_enabled'] = True with open(settings['validation_path'], 'r', encoding="utf-8") as f: validation_lines = len(f.readlines()) if validation_lines < settings['validation_batch_size']: settings['validation_batch_size'] = validation_lines messages.append(f"Batch size exceeds validation dataset size, clamping validation batch size to {validation_lines}") if settings['gpus'] > get_device_count(): settings['gpus'] = get_device_count() # what an utter mistake this was settings['optimizer'] = 'adamw' # if settings['gpus'] == 1 else 'adamw_zero' if 'learning_rate_scheme' not in settings or settings['learning_rate_scheme'] not in LEARNING_RATE_SCHEMES: settings['learning_rate_scheme'] = "Multistep" settings['learning_rate_scheme'] = LEARNING_RATE_SCHEMES[settings['learning_rate_scheme']] learning_rate_schema = [f"default_lr_scheme: {settings['learning_rate_scheme']}"] if settings['learning_rate_scheme'] == "MultiStepLR": if not settings['learning_rate_schedule']: settings['learning_rate_schedule'] = LEARNING_RATE_SCHEDULE elif isinstance(settings['learning_rate_schedule'],str): settings['learning_rate_schedule'] = json.loads(settings['learning_rate_schedule']) settings['learning_rate_schedule'] = schedule_learning_rate( iterations_per_epoch, settings['learning_rate_schedule'] ) learning_rate_schema.append(f" gen_lr_steps: {settings['learning_rate_schedule']}") learning_rate_schema.append(f" lr_gamma: 0.5") elif settings['learning_rate_scheme'] == "CosineAnnealingLR_Restart": epochs = settings['epochs'] restarts = settings['learning_rate_restarts'] restart_period = int(epochs / restarts) if 'learning_rate_warmup' not in settings: settings['learning_rate_warmup'] = 0 if 'learning_rate_min' not in settings: settings['learning_rate_min'] = 1e-08 if 'learning_rate_period' not in settings: settings['learning_rate_period'] = [ iterations_per_epoch * restart_period for x in range(epochs) ] settings['learning_rate_restarts'] = [ iterations_per_epoch * (x+1) * restart_period for x in range(restarts) ] # [52, 104, 156, 208] if 'learning_rate_restart_weights' not in settings: settings['learning_rate_restart_weights'] = [ ( restarts - x - 1 ) / restarts for x in range(restarts) ] # [.75, .5, .25, .125] settings['learning_rate_restart_weights'][-1] = settings['learning_rate_restart_weights'][-2] * 0.5 learning_rate_schema.append(f" T_period: {settings['learning_rate_period']}") learning_rate_schema.append(f" warmup: {settings['learning_rate_warmup']}") learning_rate_schema.append(f" eta_min: !!float {settings['learning_rate_min']}") learning_rate_schema.append(f" restarts: {settings['learning_rate_restarts']}") learning_rate_schema.append(f" restart_weights: {settings['learning_rate_restart_weights']}") settings['learning_rate_scheme'] = "\n".join(learning_rate_schema) if settings['resume_state']: settings['source_model'] = f"# pretrain_model_gpt: '{settings['source_model']}'" settings['resume_state'] = f"resume_state: '{settings['resume_state']}'" else: settings['source_model'] = f"pretrain_model_gpt: '{settings['source_model']}'" settings['resume_state'] = f"# resume_state: '{settings['resume_state']}'" with open(f'./models/.template.yaml', 'r', encoding="utf-8") as f: yaml = f.read() # i could just load and edit the YAML directly, but this is easier, as I don't need to bother with path traversals for k in settings: if settings[k] is None: continue yaml = yaml.replace(f"${{{k}}}", str(settings[k])) outyaml = f'./training/{settings["voice"]}/train.yaml' with open(outyaml, 'w', encoding="utf-8") as f: f.write(yaml) messages.append(f"Saved training output to: {outyaml}") return settings, messages def import_voices(files, saveAs=None, progress=None): global args if not isinstance(files, list): files = [files] for file in enumerate_progress(files, desc="Importing voice files", progress=progress): j, latents = read_generate_settings(file, read_latents=True) if j is not None and saveAs is None: saveAs = j['voice'] if saveAs is None or saveAs == "": raise Exception("Specify a voice name") outdir = f'{get_voice_dir()}/{saveAs}/' os.makedirs(outdir, exist_ok=True) if latents: print(f"Importing latents to {latents}") with open(f'{outdir}/cond_latents.pth', 'wb') as f: f.write(latents) latents = f'{outdir}/cond_latents.pth' print(f"Imported latents to {latents}") else: filename = file.name if filename[-4:] != ".wav": raise Exception("Please convert to a WAV first") path = f"{outdir}/{os.path.basename(filename)}" print(f"Importing voice to {path}") waveform, sampling_rate = torchaudio.load(filename) if args.voice_fixer: if not voicefixer: load_voicefixer() # resample to best bandwidth since voicefixer will do it anyways through librosa if sampling_rate != 44100: print(f"Resampling imported voice sample: {path}") resampler = torchaudio.transforms.Resample( sampling_rate, 44100, lowpass_filter_width=16, rolloff=0.85, resampling_method="kaiser_window", beta=8.555504641634386, ) waveform = resampler(waveform) sampling_rate = 44100 torchaudio.save(path, waveform, sampling_rate) print(f"Running 'voicefixer' on voice sample: {path}") voicefixer.restore( input = path, output = path, cuda=get_device_name() == "cuda" and args.voice_fixer_use_cuda, #mode=mode, ) else: torchaudio.save(path, waveform, sampling_rate) print(f"Imported voice to {path}") def get_voice_list(dir=get_voice_dir(), append_defaults=False): defaults = [ "random", "microphone" ] os.makedirs(dir, exist_ok=True) res = sorted([d for d in os.listdir(dir) if d not in defaults and os.path.isdir(os.path.join(dir, d)) and len(os.listdir(os.path.join(dir, d))) > 0 ]) if append_defaults: res = res + defaults return res def get_autoregressive_models(dir="./models/finetunes/", prefixed=False): os.makedirs(dir, exist_ok=True) base = [get_model_path('autoregressive.pth')] halfp = get_halfp_model_path() if os.path.exists(halfp): base.append(halfp) additionals = sorted([f'{dir}/{d}' for d in os.listdir(dir) if d[-4:] == ".pth" ]) found = [] for training in os.listdir(f'./training/'): if not os.path.isdir(f'./training/{training}/') or not os.path.isdir(f'./training/{training}/finetune/') or not os.path.isdir(f'./training/{training}/finetune/models/'): continue models = sorted([ int(d[:-8]) for d in os.listdir(f'./training/{training}/finetune/models/') if d[-8:] == "_gpt.pth" ]) found = found + [ f'./training/{training}/finetune/models/{d}_gpt.pth' for d in models ] if len(found) > 0 or len(additionals) > 0: base = ["auto"] + base res = base + additionals + found if prefixed: for i in range(len(res)): path = res[i] hash = hash_file(path) shorthash = hash[:8] res[i] = f'[{shorthash}] {path}' return res def get_dataset_list(dir="./training/"): return sorted([d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) and "train.txt" in os.listdir(os.path.join(dir, d)) ]) def get_training_list(dir="./training/"): return sorted([f'./training/{d}/train.yaml' for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) and "train.yaml" in os.listdir(os.path.join(dir, d)) ]) def pad(num, zeroes): return str(num).zfill(zeroes+1) def curl(url): try: req = urllib.request.Request(url, headers={'User-Agent': 'Python'}) conn = urllib.request.urlopen(req) data = conn.read() data = data.decode() data = json.loads(data) conn.close() return data except Exception as e: print(e) return None def check_for_updates( dir = None ): if dir is None: check_for_updates("./.git/") check_for_updates("./.git/modules/dlas/") check_for_updates("./.git/modules/tortoise-tts/") return git_dir = dir if not os.path.isfile(f'{git_dir}/FETCH_HEAD'): print(f"Cannot check for updates for {dir}: not from a git repo") return False with open(f'{git_dir}/FETCH_HEAD', 'r', encoding="utf-8") as f: head = f.read() match = re.findall(r"^([a-f0-9]+).+?https:\/\/(.+?)\/(.+?)\/(.+?)\n", head) if match is None or len(match) == 0: print(f"Cannot check for updates for {dir}: cannot parse FETCH_HEAD") return False match = match[0] local = match[0] host = match[1] owner = match[2] repo = match[3] res = curl(f"https://{host}/api/v1/repos/{owner}/{repo}/branches/") #this only works for gitea instances if res is None or len(res) == 0: print(f"Cannot check for updates for {dir}: cannot fetch from remote") return False remote = res[0]["commit"]["id"] if remote != local: print(f"New version found for {dir}: {local[:8]} => {remote[:8]}") return True return False def enumerate_progress(iterable, desc=None, progress=None, verbose=None): if verbose and desc is not None: print(desc) if progress is None: return tqdm(iterable, disable=not verbose) return progress.tqdm(iterable, desc=f'{progress.msg_prefix} {desc}' if hasattr(progress, 'msg_prefix') else desc, track_tqdm=True) def notify_progress(message, progress=None, verbose=True): if verbose: print(message) if progress is None: return progress(0, desc=message) def get_args(): global args return args def setup_args(): global args default_arguments = { 'share': False, 'listen': None, 'check-for-updates': False, 'models-from-local-only': False, 'low-vram': False, 'sample-batch-size': None, 'embed-output-metadata': True, 'latents-lean-and-mean': True, 'voice-fixer': False, # getting tired of long initialization times in a Colab for downloading a large dataset for it 'voice-fixer-use-cuda': True, 'force-cpu-for-conditioning-latents': False, 'defer-tts-load': False, 'device-override': None, 'prune-nonfinal-outputs': True, 'vocoder-model': VOCODERS[-1], 'concurrency-count': 2, 'autocalculate-voice-chunk-duration-size': 0, 'output-sample-rate': 44100, 'output-volume': 1, 'autoregressive-model': None, 'whisper-backend': 'openai/whisper', 'whisper-model': "base", 'training-default-halfp': False, 'training-default-bnb': True, } if os.path.isfile('./config/exec.json'): with open(f'./config/exec.json', 'r', encoding="utf-8") as f: try: overrides = json.load(f) for k in overrides: default_arguments[k] = overrides[k] except Exception as e: print(e) pass parser = argparse.ArgumentParser() parser.add_argument("--share", action='store_true', default=default_arguments['share'], help="Lets Gradio return a public URL to use anywhere") parser.add_argument("--listen", default=default_arguments['listen'], help="Path for Gradio to listen on") parser.add_argument("--check-for-updates", action='store_true', default=default_arguments['check-for-updates'], help="Checks for update on startup") parser.add_argument("--models-from-local-only", action='store_true', default=default_arguments['models-from-local-only'], help="Only loads models from disk, does not check for updates for models") parser.add_argument("--low-vram", action='store_true', default=default_arguments['low-vram'], help="Disables some optimizations that increases VRAM usage") parser.add_argument("--no-embed-output-metadata", action='store_false', default=not default_arguments['embed-output-metadata'], help="Disables embedding output metadata into resulting WAV files for easily fetching its settings used with the web UI (data is stored in the lyrics metadata tag)") parser.add_argument("--latents-lean-and-mean", action='store_true', default=default_arguments['latents-lean-and-mean'], help="Exports the bare essentials for latents.") parser.add_argument("--voice-fixer", action='store_true', default=default_arguments['voice-fixer'], help="Uses python module 'voicefixer' to improve audio quality, if available.") parser.add_argument("--voice-fixer-use-cuda", action='store_true', default=default_arguments['voice-fixer-use-cuda'], help="Hints to voicefixer to use CUDA, if available.") parser.add_argument("--force-cpu-for-conditioning-latents", default=default_arguments['force-cpu-for-conditioning-latents'], action='store_true', help="Forces computing conditional latents to be done on the CPU (if you constantyl OOM on low chunk counts)") parser.add_argument("--defer-tts-load", default=default_arguments['defer-tts-load'], action='store_true', help="Defers loading TTS model") parser.add_argument("--prune-nonfinal-outputs", default=default_arguments['prune-nonfinal-outputs'], action='store_true', help="Deletes non-final output files on completing a generation") parser.add_argument("--vocoder-model", default=default_arguments['vocoder-model'], action='store_true', help="Specifies with vocoder to use") parser.add_argument("--device-override", default=default_arguments['device-override'], help="A device string to override pass through Torch") parser.add_argument("--sample-batch-size", default=default_arguments['sample-batch-size'], type=int, help="Sets how many batches to use during the autoregressive samples pass") parser.add_argument("--concurrency-count", type=int, default=default_arguments['concurrency-count'], help="How many Gradio events to process at once") parser.add_argument("--autocalculate-voice-chunk-duration-size", type=float, default=default_arguments['autocalculate-voice-chunk-duration-size'], help="Number of seconds to suggest voice chunk size for (for example, 100 seconds of audio at 10 seconds per chunk will suggest 10 chunks)") parser.add_argument("--output-sample-rate", type=int, default=default_arguments['output-sample-rate'], help="Sample rate to resample the output to (from 24KHz)") parser.add_argument("--output-volume", type=float, default=default_arguments['output-volume'], help="Adjusts volume of output") parser.add_argument("--autoregressive-model", default=default_arguments['autoregressive-model'], help="Specifies which autoregressive model to use for sampling.") parser.add_argument("--whisper-backend", default=default_arguments['whisper-backend'], action='store_true', help="Picks which whisper backend to use (openai/whisper, lightmare/whispercpp)") parser.add_argument("--whisper-model", default=default_arguments['whisper-model'], help="Specifies which whisper model to use for transcription.") parser.add_argument("--training-default-halfp", action='store_true', default=default_arguments['training-default-halfp'], help="Training default: halfp") parser.add_argument("--training-default-bnb", action='store_true', default=default_arguments['training-default-bnb'], help="Training default: bnb") parser.add_argument("--os", default="unix", help="Specifies which OS, easily") args = parser.parse_args() args.embed_output_metadata = not args.no_embed_output_metadata if not args.device_override: set_device_name(args.device_override) args.listen_host = None args.listen_port = None args.listen_path = None if args.listen: try: match = re.findall(r"^(?:(.+?):(\d+))?(\/.*?)?$", args.listen)[0] args.listen_host = match[0] if match[0] != "" else "127.0.0.1" args.listen_port = match[1] if match[1] != "" else None args.listen_path = match[2] if match[2] != "" else "/" except Exception as e: pass if args.listen_port is not None: args.listen_port = int(args.listen_port) if args.listen_port == 0: args.listen_port = None return args def update_args( **kwargs ): global args settings = {} settings.update(kwargs) args.listen = settings['listen'] args.share = settings['share'] args.check_for_updates = settings['check_for_updates'] args.models_from_local_only = settings['models_from_local_only'] args.low_vram = settings['low_vram'] args.force_cpu_for_conditioning_latents = settings['force_cpu_for_conditioning_latents'] args.defer_tts_load = settings['defer_tts_load'] args.prune_nonfinal_outputs = settings['prune_nonfinal_outputs'] args.device_override = settings['device_override'] args.sample_batch_size = settings['sample_batch_size'] args.embed_output_metadata = settings['embed_output_metadata'] args.latents_lean_and_mean = settings['latents_lean_and_mean'] args.voice_fixer = settings['voice_fixer'] args.voice_fixer_use_cuda = settings['voice_fixer_use_cuda'] args.concurrency_count = settings['concurrency_count'] args.output_sample_rate = 44000 args.autocalculate_voice_chunk_duration_size = settings['autocalculate_voice_chunk_duration_size'] args.output_volume = settings['output_volume'] args.autoregressive_model = settings['autoregressive_model'] args.vocoder_model = settings['vocoder_model'] args.whisper_backend = settings['whisper_backend'] args.whisper_model = settings['whisper_model'] args.training_default_halfp = settings['training_default_halfp'] args.training_default_bnb = settings['training_default_bnb'] save_args_settings() def save_args_settings(): global args settings = { 'listen': None if not args.listen else args.listen, 'share': args.share, 'low-vram':args.low_vram, 'check-for-updates':args.check_for_updates, 'models-from-local-only':args.models_from_local_only, 'force-cpu-for-conditioning-latents': args.force_cpu_for_conditioning_latents, 'defer-tts-load': args.defer_tts_load, 'prune-nonfinal-outputs': args.prune_nonfinal_outputs, 'device-override': args.device_override, 'sample-batch-size': args.sample_batch_size, 'embed-output-metadata': args.embed_output_metadata, 'latents-lean-and-mean': args.latents_lean_and_mean, 'voice-fixer': args.voice_fixer, 'voice-fixer-use-cuda': args.voice_fixer_use_cuda, 'concurrency-count': args.concurrency_count, 'output-sample-rate': args.output_sample_rate, 'autocalculate-voice-chunk-duration-size': args.autocalculate_voice_chunk_duration_size, 'output-volume': args.output_volume, 'autoregressive-model': args.autoregressive_model, 'vocoder-model': args.vocoder_model, 'whisper-backend': args.whisper_backend, 'whisper-model': args.whisper_model, 'training-default-halfp': args.training_default_halfp, 'training-default-bnb': args.training_default_bnb, } os.makedirs('./config/', exist_ok=True) with open(f'./config/exec.json', 'w', encoding="utf-8") as f: f.write(json.dumps(settings, indent='\t') ) # super kludgy )`; def import_generate_settings(file = None): if not file: file = "./config/generate.json" res = { 'text': None, 'delimiter': None, 'emotion': None, 'prompt': None, 'voice': None, 'mic_audio': None, 'voice_latents_chunks': None, 'candidates': None, 'seed': None, 'num_autoregressive_samples': 16, 'diffusion_iterations': 30, 'temperature': 0.8, 'diffusion_sampler': "DDIM", 'breathing_room': 8 , 'cvvp_weight': 0.0, 'top_p': 0.8, 'diffusion_temperature': 1.0, 'length_penalty': 1.0, 'repetition_penalty': 2.0, 'cond_free_k': 2.0, 'experimentals': None, } settings, _ = read_generate_settings(file, read_latents=False) if settings is not None: res.update(settings) return res def reset_generation_settings(): with open(f'./config/generate.json', 'w', encoding="utf-8") as f: f.write(json.dumps({}, indent='\t') ) return import_generate_settings() def read_generate_settings(file, read_latents=True): j = None latents = None if isinstance(file, list) and len(file) == 1: file = file[0] try: if file is not None: if hasattr(file, 'name'): file = file.name if file[-4:] == ".wav": metadata = music_tag.load_file(file) if 'lyrics' in metadata: j = json.loads(str(metadata['lyrics'])) elif file[-5:] == ".json": with open(file, 'r') as f: j = json.load(f) except Exception as e: pass if j is not None: if 'latents' in j: if read_latents: latents = base64.b64decode(j['latents']) del j['latents'] if "time" in j: j["time"] = "{:.3f}".format(j["time"]) return ( j, latents, ) def version_check_tts( min_version ): global tts if not tts: raise Exception("TTS is not initialized") if not hasattr(tts, 'version'): return False if min_version[0] > tts.version[0]: return True if min_version[1] > tts.version[1]: return True if min_version[2] >= tts.version[2]: return True return False def load_tts( restart=False, autoregressive_model=None ): global args global tts if restart: unload_tts() if autoregressive_model: args.autoregressive_model = autoregressive_model else: autoregressive_model = args.autoregressive_model if autoregressive_model == "auto": autoregressive_model = deduce_autoregressive_model() print(f"Loading TorToiSe... (AR: {autoregressive_model}, vocoder: {args.vocoder_model})") if get_device_name() == "cpu": print("!!!! WARNING !!!! No GPU available in PyTorch. You may need to reinstall PyTorch.") tts_loading = True try: tts = TextToSpeech(minor_optimizations=not args.low_vram, autoregressive_model_path=autoregressive_model, vocoder_model=args.vocoder_model) except Exception as e: tts = TextToSpeech(minor_optimizations=not args.low_vram) load_autoregressive_model(autoregressive_model) tts_loading = False get_model_path('dvae.pth') print("Loaded TorToiSe, ready for generation.") return tts setup_tortoise = load_tts def unload_tts(): global tts if tts: del tts tts = None print("Unloaded TTS") do_gc() def reload_tts( model=None ): load_tts( restart=True, model=model ) def get_current_voice(): global current_voice if current_voice: return current_voice settings, _ = read_generate_settings("./config/generate.json", read_latents=False) if settings and "voice" in settings['voice']: return settings["voice"] return None def deduce_autoregressive_model(voice=None): if not voice: voice = get_current_voice() if voice: if os.path.exists(f'./models/finetunes/{voice}.pth'): return f'./models/finetunes/{voice}.pth' dir = f'./training/{voice}/finetune/models/' if os.path.isdir(dir): counts = sorted([ int(d[:-8]) for d in os.listdir(dir) if d[-8:] == "_gpt.pth" ]) names = [ f'{dir}/{d}_gpt.pth' for d in counts ] if len(names) > 0: return names[-1] if args.autoregressive_model != "auto": return args.autoregressive_model return get_model_path('autoregressive.pth') def update_autoregressive_model(autoregressive_model_path): match = re.findall(r'^\[[a-fA-F0-9]{8}\] (.+?)$', autoregressive_model_path) if match: autoregressive_model_path = match[0] if not autoregressive_model_path or not os.path.exists(autoregressive_model_path): print(f"Invalid model: {autoregressive_model_path}") return args.autoregressive_model = autoregressive_model_path save_args_settings() print(f'Stored autoregressive model to settings: {autoregressive_model_path}') global tts if not tts: if tts_loading: raise Exception("TTS is still initializing...") return if hasattr(tts, "loading") and tts.loading: raise Exception("TTS is still initializing...") if autoregressive_model_path == "auto": autoregressive_model_path = deduce_autoregressive_model() if autoregressive_model_path == tts.autoregressive_model_path: return tts.load_autoregressive_model(autoregressive_model_path) do_gc() return autoregressive_model_path def update_vocoder_model(vocoder_model): args.vocoder_model = vocoder_model save_args_settings() print(f'Stored vocoder model to settings: {vocoder_model}') global tts if not tts: if tts_loading: raise Exception("TTS is still initializing...") return if hasattr(tts, "loading") and tts.loading: raise Exception("TTS is still initializing...") print(f"Loading model: {vocoder_model}") tts.load_vocoder_model(vocoder_model) print(f"Loaded model: {tts.vocoder_model}") do_gc() return vocoder_model def load_voicefixer(restart=False): global voicefixer if restart: unload_voicefixer() try: print("Loading Voicefixer") from voicefixer import VoiceFixer voicefixer = VoiceFixer() print("Loaded Voicefixer") except Exception as e: print(f"Error occurred while tring to initialize voicefixer: {e}") if voicefixer: del voicefixer voicefixer = None def unload_voicefixer(): global voicefixer if voicefixer: del voicefixer voicefixer = None print("Unloaded Voicefixer") do_gc() def load_whisper_model(language=None, model_name=None, progress=None): global whisper_model if model_name == "m-bain/whisperx": print("WhisperX has been removed. Reverting to openai/whisper. Apologies for the inconvenience.") model_name = "openai/whisper" if args.whisper_backend not in WHISPER_BACKENDS: raise Exception(f"unavailable backend: {args.whisper_backend}") if not model_name: model_name = args.whisper_model else: args.whisper_model = model_name save_args_settings() if language and f'{model_name}.{language}' in WHISPER_SPECIALIZED_MODELS: model_name = f'{model_name}.{language}' print(f"Loading specialized model for language: {language}") notify_progress(f"Loading Whisper model: {model_name}", progress) if args.whisper_backend == "openai/whisper": import whisper try: #is it possible for model to fit on vram but go oom later on while executing on data? whisper_model = whisper.load_model(model_name) except: print("Out of VRAM memory. falling back to loading Whisper on CPU.") whisper_model = whisper.load_model(model_name, device="cpu") elif args.whisper_backend == "lightmare/whispercpp": from whispercpp import Whisper if not language: language = 'auto' b_lang = language.encode('ascii') whisper_model = Whisper(model_name, models_dir='./models/', language=b_lang) print("Loaded Whisper model") def unload_whisper(): global whisper_model if whisper_model: del whisper_model whisper_model = None print("Unloaded Whisper") do_gc()