ai-voice-cloning/src/webui.py

517 lines
16 KiB
Python
Executable File

import os
import argparse
import time
import json
import base64
import re
import urllib.request
import torch
import torchaudio
import music_tag
import gradio as gr
import gradio.utils
from datetime import datetime
import tortoise.api
from tortoise.utils.audio import get_voice_dir
from utils import *
args = setup_args()
def run_generation(
text,
delimiter,
emotion,
prompt,
voice,
mic_audio,
voice_latents_chunks,
seed,
candidates,
num_autoregressive_samples,
diffusion_iterations,
temperature,
diffusion_sampler,
breathing_room,
cvvp_weight,
top_p,
diffusion_temperature,
length_penalty,
repetition_penalty,
cond_free_k,
experimental_checkboxes,
progress=gr.Progress(track_tqdm=True)
):
try:
sample, outputs, stats = generate(
text,
delimiter,
emotion,
prompt,
voice,
mic_audio,
voice_latents_chunks,
seed,
candidates,
num_autoregressive_samples,
diffusion_iterations,
temperature,
diffusion_sampler,
breathing_room,
cvvp_weight,
top_p,
diffusion_temperature,
length_penalty,
repetition_penalty,
cond_free_k,
experimental_checkboxes,
progress
)
except Exception as e:
message = str(e)
if message == "Kill signal detected":
reload_tts()
raise gr.Error(message)
return (
outputs[0],
gr.update(value=sample, visible=sample is not None),
gr.update(choices=outputs, value=outputs[0], visible=len(outputs) > 1, interactive=True),
gr.update(visible=len(outputs) > 1),
gr.update(value=stats, visible=True),
)
def compute_latents(voice, voice_latents_chunks, progress=gr.Progress(track_tqdm=True)):
global tts
global args
try:
tts
except NameError:
raise gr.Error("TTS is still initializing...")
voice_samples, conditioning_latents = load_voice(voice, load_latents=False)
if voice_samples is None:
return
conditioning_latents = tts.get_conditioning_latents(voice_samples, return_mels=not args.latents_lean_and_mean, progress=progress, slices=voice_latents_chunks, force_cpu=args.force_cpu_for_conditioning_latents)
if len(conditioning_latents) == 4:
conditioning_latents = (conditioning_latents[0], conditioning_latents[1], conditioning_latents[2], None)
torch.save(conditioning_latents, f'{get_voice_dir()}/{voice}/cond_latents.pth')
return voice
def update_presets(value):
PRESETS = {
'Ultra Fast': {'num_autoregressive_samples': 16, 'diffusion_iterations': 30, 'cond_free': False},
'Fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 80},
'Standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200},
'High Quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400},
}
if value in PRESETS:
preset = PRESETS[value]
return (gr.update(value=preset['num_autoregressive_samples']), gr.update(value=preset['diffusion_iterations']))
else:
return (gr.update(), gr.update())
def setup_gradio():
global args
global ui
if not args.share:
def noop(function, return_value=None):
def wrapped(*args, **kwargs):
return return_value
return wrapped
gradio.utils.version_check = noop(gradio.utils.version_check)
gradio.utils.initiated_analytics = noop(gradio.utils.initiated_analytics)
gradio.utils.launch_analytics = noop(gradio.utils.launch_analytics)
gradio.utils.integration_analytics = noop(gradio.utils.integration_analytics)
gradio.utils.error_analytics = noop(gradio.utils.error_analytics)
gradio.utils.log_feature_analytics = noop(gradio.utils.log_feature_analytics)
#gradio.utils.get_local_ip_address = noop(gradio.utils.get_local_ip_address, 'localhost')
if args.models_from_local_only:
os.environ['TRANSFORMERS_OFFLINE']='1'
with gr.Blocks() as ui:
with gr.Tab("Generate"):
with gr.Row():
with gr.Column():
text = gr.Textbox(lines=4, label="Prompt")
with gr.Row():
with gr.Column():
delimiter = gr.Textbox(lines=1, label="Line Delimiter", placeholder="\\n")
emotion = gr.Radio(
["Happy", "Sad", "Angry", "Disgusted", "Arrogant", "Custom"],
value="Custom",
label="Emotion",
type="value",
interactive=True
)
prompt = gr.Textbox(lines=1, label="Custom Emotion + Prompt (if selected)")
voice = gr.Dropdown(
get_voice_list(),
label="Voice",
type="value",
)
mic_audio = gr.Audio(
label="Microphone Source",
source="microphone",
type="filepath",
)
refresh_voices = gr.Button(value="Refresh Voice List")
voice_latents_chunks = gr.Slider(label="Voice Chunks", minimum=1, maximum=64, value=1, step=1)
recompute_voice_latents = gr.Button(value="(Re)Compute Voice Latents")
recompute_voice_latents.click(compute_latents,
inputs=[
voice,
voice_latents_chunks,
],
outputs=voice,
)
prompt.change(fn=lambda value: gr.update(value="Custom"),
inputs=prompt,
outputs=emotion
)
mic_audio.change(fn=lambda value: gr.update(value="microphone"),
inputs=mic_audio,
outputs=voice
)
with gr.Column():
candidates = gr.Slider(value=1, minimum=1, maximum=6, step=1, label="Candidates")
seed = gr.Number(value=0, precision=0, label="Seed")
preset = gr.Radio(
["Ultra Fast", "Fast", "Standard", "High Quality"],
label="Preset",
type="value",
)
num_autoregressive_samples = gr.Slider(value=128, minimum=0, maximum=512, step=1, label="Samples")
diffusion_iterations = gr.Slider(value=128, minimum=0, maximum=512, step=1, label="Iterations")
temperature = gr.Slider(value=0.2, minimum=0, maximum=1, step=0.1, label="Temperature")
breathing_room = gr.Slider(value=8, minimum=1, maximum=32, step=1, label="Pause Size")
diffusion_sampler = gr.Radio(
["P", "DDIM"], # + ["K_Euler_A", "DPM++2M"],
value="P",
label="Diffusion Samplers",
type="value",
)
preset.change(fn=update_presets,
inputs=preset,
outputs=[
num_autoregressive_samples,
diffusion_iterations,
],
)
show_experimental_settings = gr.Checkbox(label="Show Experimental Settings")
reset_generation_settings_button = gr.Button(value="Reset to Default")
with gr.Column(visible=False) as col:
experimental_column = col
experimental_checkboxes = gr.CheckboxGroup(["Half Precision", "Conditioning-Free"], value=["Conditioning-Free"], label="Experimental Flags")
cvvp_weight = gr.Slider(value=0, minimum=0, maximum=1, label="CVVP Weight")
top_p = gr.Slider(value=0.8, minimum=0, maximum=1, label="Top P")
diffusion_temperature = gr.Slider(value=1.0, minimum=0, maximum=1, label="Diffusion Temperature")
length_penalty = gr.Slider(value=1.0, minimum=0, maximum=8, label="Length Penalty")
repetition_penalty = gr.Slider(value=2.0, minimum=0, maximum=8, label="Repetition Penalty")
cond_free_k = gr.Slider(value=2.0, minimum=0, maximum=4, label="Conditioning-Free K")
show_experimental_settings.change(
fn=lambda x: gr.update(visible=x),
inputs=show_experimental_settings,
outputs=experimental_column
)
with gr.Column():
submit = gr.Button(value="Generate")
stop = gr.Button(value="Stop")
generation_results = gr.Dataframe(label="Results", headers=["Seed", "Time"], visible=False)
source_sample = gr.Audio(label="Source Sample", visible=False)
output_audio = gr.Audio(label="Output")
candidates_list = gr.Dropdown(label="Candidates", type="value", visible=False)
output_pick = gr.Button(value="Select Candidate", visible=False)
with gr.Tab("History"):
with gr.Row():
with gr.Column():
headers = {
"Name": "",
"Samples": "num_autoregressive_samples",
"Iterations": "diffusion_iterations",
"Temp.": "temperature",
"Sampler": "diffusion_sampler",
"CVVP": "cvvp_weight",
"Top P": "top_p",
"Diff. Temp.": "diffusion_temperature",
"Len Pen": "length_penalty",
"Rep Pen": "repetition_penalty",
"Cond-Free K": "cond_free_k",
"Time": "time",
}
history_info = gr.Dataframe(label="Results", headers=list(headers.keys()))
with gr.Row():
with gr.Column():
history_voices = gr.Dropdown(
get_voice_list("./results/"),
label="Voice",
type="value",
)
history_view_results_button = gr.Button(value="View Files")
with gr.Column():
history_results_list = gr.Dropdown(label="Results",type="value", interactive=True)
history_view_result_button = gr.Button(value="View File")
with gr.Column():
history_audio = gr.Audio()
history_copy_settings_button = gr.Button(value="Copy Settings")
def history_view_results( voice ):
results = []
files = []
outdir = f"./results/{voice}/"
for i, file in enumerate(sorted(os.listdir(outdir))):
if file[-4:] != ".wav":
continue
metadata, _ = read_generate_settings(f"{outdir}/{file}", read_latents=False)
if metadata is None:
continue
values = []
for k in headers:
v = file
if k != "Name":
v = metadata[headers[k]]
values.append(v)
files.append(file)
results.append(values)
return (
results,
gr.Dropdown.update(choices=sorted(files))
)
history_view_results_button.click(
fn=history_view_results,
inputs=history_voices,
outputs=[
history_info,
history_results_list,
]
)
history_view_result_button.click(
fn=lambda voice, file: f"./results/{voice}/{file}",
inputs=[
history_voices,
history_results_list,
],
outputs=history_audio
)
with gr.Tab("Utilities"):
with gr.Row():
with gr.Column():
audio_in = gr.File(type="file", label="Audio Input", file_types=["audio"])
copy_button = gr.Button(value="Copy Settings")
import_voice_name = gr.Textbox(label="Voice Name")
import_voice_button = gr.Button(value="Import Voice")
with gr.Column():
metadata_out = gr.JSON(label="Audio Metadata")
latents_out = gr.File(type="binary", label="Voice Latents")
def read_generate_settings_proxy(file, saveAs='.temp'):
j, latents = read_generate_settings(file)
if latents:
outdir = f'{get_voice_dir()}/{saveAs}/'
os.makedirs(outdir, exist_ok=True)
with open(f'{outdir}/cond_latents.pth', 'wb') as f:
f.write(latents)
latents = f'{outdir}/cond_latents.pth'
return (
j,
gr.update(value=latents, visible=latents is not None),
None if j is None else j['voice']
)
audio_in.upload(
fn=read_generate_settings_proxy,
inputs=audio_in,
outputs=[
metadata_out,
latents_out,
import_voice_name
]
)
import_voice_button.click(
fn=import_voice,
inputs=[
audio_in,
import_voice_name,
]
)
with gr.Tab("Training"):
with gr.Tab("Configuration"):
with gr.Row():
with gr.Column():
training_settings = [
gr.Slider(label="Batch Size", value=128),
gr.Slider(label="Learning Rate", value=1e-5, minimum=0, maximum=1e-4, step=1e-6),
gr.Number(label="Print Frequency", value=50),
gr.Number(label="Save Frequency", value=50),
]
with gr.Column():
training_settings = training_settings + [
gr.Textbox(label="Training Name", placeholder="finetune"),
gr.Textbox(label="Dataset Name", placeholder="finetune"),
gr.Textbox(label="Dataset Path", placeholder="./experiments/finetune/train.txt"),
gr.Textbox(label="Validation Name", placeholder="finetune"),
gr.Textbox(label="Validation Path", placeholder="./experiments/finetune/val.txt"),
]
save_yaml_button = gr.Button(value="Save Training Configuration")
save_yaml_button.click(save_training_settings,
inputs=training_settings,
outputs=None
)
with gr.Tab("Settings"):
with gr.Row():
exec_inputs = []
with gr.Column():
exec_inputs = exec_inputs + [
gr.Textbox(label="Listen", value=args.listen, placeholder="127.0.0.1:7860/"),
gr.Checkbox(label="Public Share Gradio", value=args.share),
gr.Checkbox(label="Check For Updates", value=args.check_for_updates),
gr.Checkbox(label="Only Load Models Locally", value=args.models_from_local_only),
gr.Checkbox(label="Low VRAM", value=args.low_vram),
gr.Checkbox(label="Embed Output Metadata", value=args.embed_output_metadata),
gr.Checkbox(label="Slimmer Computed Latents", value=args.latents_lean_and_mean),
gr.Checkbox(label="Voice Fixer", value=args.voice_fixer),
gr.Checkbox(label="Use CUDA for Voice Fixer", value=args.voice_fixer_use_cuda),
gr.Checkbox(label="Force CPU for Conditioning Latents", value=args.force_cpu_for_conditioning_latents),
gr.Textbox(label="Device Override", value=args.device_override),
]
gr.Button(value="Check for Updates").click(check_for_updates)
gr.Button(value="Reload TTS").click(reload_tts)
with gr.Column():
exec_inputs = exec_inputs + [
gr.Number(label="Sample Batch Size", precision=0, value=args.sample_batch_size),
gr.Number(label="Concurrency Count", precision=0, value=args.concurrency_count),
gr.Number(label="Ouptut Sample Rate", precision=0, value=args.output_sample_rate),
gr.Slider(label="Ouptut Volume", minimum=0, maximum=2, value=args.output_volume),
]
for i in exec_inputs:
i.change(
fn=export_exec_settings,
inputs=exec_inputs
)
input_settings = [
text,
delimiter,
emotion,
prompt,
voice,
mic_audio,
voice_latents_chunks,
seed,
candidates,
num_autoregressive_samples,
diffusion_iterations,
temperature,
diffusion_sampler,
breathing_room,
cvvp_weight,
top_p,
diffusion_temperature,
length_penalty,
repetition_penalty,
cond_free_k,
experimental_checkboxes,
]
# YUCK
def update_voices():
return (
gr.Dropdown.update(choices=get_voice_list()),
gr.Dropdown.update(choices=get_voice_list("./results/")),
)
def history_copy_settings( voice, file ):
return import_generate_settings( f"./results/{voice}/{file}" )
refresh_voices.click(update_voices,
inputs=None,
outputs=[
voice,
history_voices
]
)
output_pick.click(
lambda x: x,
inputs=candidates_list,
outputs=output_audio,
)
submit.click(
lambda: (gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)),
outputs=[source_sample, candidates_list, output_pick, generation_results],
)
submit_event = submit.click(run_generation,
inputs=input_settings,
outputs=[output_audio, source_sample, candidates_list, output_pick, generation_results],
)
copy_button.click(import_generate_settings,
inputs=audio_in, # JSON elements cannot be used as inputs
outputs=input_settings
)
reset_generation_settings_button.click(
fn=reset_generation_settings,
inputs=None,
outputs=input_settings
)
history_copy_settings_button.click(history_copy_settings,
inputs=[
history_voices,
history_results_list,
],
outputs=input_settings
)
if os.path.isfile('./config/generate.json'):
ui.load(import_generate_settings, inputs=None, outputs=input_settings)
if args.check_for_updates:
ui.load(check_for_updates)
stop.click(fn=cancel_generate, inputs=None, outputs=None, cancels=[submit_event])
ui.queue(concurrency_count=args.concurrency_count)
webui = ui
return webui