forked from mrq/DL-Art-School
Support diffusion unet
This commit is contained in:
parent
a0158ebc69
commit
692e9c417b
226
codes/models/diffusion/fp16_util.py
Normal file
226
codes/models/diffusion/fp16_util.py
Normal file
|
@ -0,0 +1,226 @@
|
|||
"""
|
||||
Helpers to train with 16-bit precision.
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import torch as th
|
||||
import torch.nn as nn
|
||||
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
|
||||
|
||||
INITIAL_LOG_LOSS_SCALE = 20.0
|
||||
|
||||
|
||||
def convert_module_to_f16(l):
|
||||
"""
|
||||
Convert primitive modules to float16.
|
||||
"""
|
||||
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
|
||||
l.weight.data = l.weight.data.half()
|
||||
if l.bias is not None:
|
||||
l.bias.data = l.bias.data.half()
|
||||
|
||||
|
||||
def convert_module_to_f32(l):
|
||||
"""
|
||||
Convert primitive modules to float32, undoing convert_module_to_f16().
|
||||
"""
|
||||
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
|
||||
l.weight.data = l.weight.data.float()
|
||||
if l.bias is not None:
|
||||
l.bias.data = l.bias.data.float()
|
||||
|
||||
|
||||
def make_master_params(param_groups_and_shapes):
|
||||
"""
|
||||
Copy model parameters into a (differently-shaped) list of full-precision
|
||||
parameters.
|
||||
"""
|
||||
master_params = []
|
||||
for param_group, shape in param_groups_and_shapes:
|
||||
master_param = nn.Parameter(
|
||||
_flatten_dense_tensors(
|
||||
[param.detach().float() for (_, param) in param_group]
|
||||
).view(shape)
|
||||
)
|
||||
master_param.requires_grad = True
|
||||
master_params.append(master_param)
|
||||
return master_params
|
||||
|
||||
|
||||
def model_grads_to_master_grads(param_groups_and_shapes, master_params):
|
||||
"""
|
||||
Copy the gradients from the model parameters into the master parameters
|
||||
from make_master_params().
|
||||
"""
|
||||
for master_param, (param_group, shape) in zip(
|
||||
master_params, param_groups_and_shapes
|
||||
):
|
||||
master_param.grad = _flatten_dense_tensors(
|
||||
[param_grad_or_zeros(param) for (_, param) in param_group]
|
||||
).view(shape)
|
||||
|
||||
|
||||
def master_params_to_model_params(param_groups_and_shapes, master_params):
|
||||
"""
|
||||
Copy the master parameter data back into the model parameters.
|
||||
"""
|
||||
# Without copying to a list, if a generator is passed, this will
|
||||
# silently not copy any parameters.
|
||||
for master_param, (param_group, _) in zip(master_params, param_groups_and_shapes):
|
||||
for (_, param), unflat_master_param in zip(
|
||||
param_group, unflatten_master_params(param_group, master_param.view(-1))
|
||||
):
|
||||
param.detach().copy_(unflat_master_param)
|
||||
|
||||
|
||||
def unflatten_master_params(param_group, master_param):
|
||||
return _unflatten_dense_tensors(master_param, [param for (_, param) in param_group])
|
||||
|
||||
|
||||
def get_param_groups_and_shapes(named_model_params):
|
||||
named_model_params = list(named_model_params)
|
||||
scalar_vector_named_params = (
|
||||
[(n, p) for (n, p) in named_model_params if p.ndim <= 1],
|
||||
(-1),
|
||||
)
|
||||
matrix_named_params = (
|
||||
[(n, p) for (n, p) in named_model_params if p.ndim > 1],
|
||||
(1, -1),
|
||||
)
|
||||
return [scalar_vector_named_params, matrix_named_params]
|
||||
|
||||
|
||||
def master_params_to_state_dict(
|
||||
model, param_groups_and_shapes, master_params, use_fp16
|
||||
):
|
||||
if use_fp16:
|
||||
state_dict = model.state_dict()
|
||||
for master_param, (param_group, _) in zip(
|
||||
master_params, param_groups_and_shapes
|
||||
):
|
||||
for (name, _), unflat_master_param in zip(
|
||||
param_group, unflatten_master_params(param_group, master_param.view(-1))
|
||||
):
|
||||
assert name in state_dict
|
||||
state_dict[name] = unflat_master_param
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
for i, (name, _value) in enumerate(model.named_parameters()):
|
||||
assert name in state_dict
|
||||
state_dict[name] = master_params[i]
|
||||
return state_dict
|
||||
|
||||
|
||||
def state_dict_to_master_params(model, state_dict, use_fp16):
|
||||
if use_fp16:
|
||||
named_model_params = [
|
||||
(name, state_dict[name]) for name, _ in model.named_parameters()
|
||||
]
|
||||
param_groups_and_shapes = get_param_groups_and_shapes(named_model_params)
|
||||
master_params = make_master_params(param_groups_and_shapes)
|
||||
else:
|
||||
master_params = [state_dict[name] for name, _ in model.named_parameters()]
|
||||
return master_params
|
||||
|
||||
|
||||
def zero_master_grads(master_params):
|
||||
for param in master_params:
|
||||
param.grad = None
|
||||
|
||||
|
||||
def zero_grad(model_params):
|
||||
for param in model_params:
|
||||
# Taken from https://pytorch.org/docs/stable/_modules/torch/optim/optimizer.html#Optimizer.add_param_group
|
||||
if param.grad is not None:
|
||||
param.grad.detach_()
|
||||
param.grad.zero_()
|
||||
|
||||
|
||||
def param_grad_or_zeros(param):
|
||||
if param.grad is not None:
|
||||
return param.grad.data.detach()
|
||||
else:
|
||||
return th.zeros_like(param)
|
||||
|
||||
|
||||
class MixedPrecisionTrainer:
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
model,
|
||||
use_fp16=False,
|
||||
fp16_scale_growth=1e-3,
|
||||
initial_lg_loss_scale=INITIAL_LOG_LOSS_SCALE,
|
||||
):
|
||||
self.model = model
|
||||
self.use_fp16 = use_fp16
|
||||
self.fp16_scale_growth = fp16_scale_growth
|
||||
|
||||
self.model_params = list(self.model.parameters())
|
||||
self.master_params = self.model_params
|
||||
self.param_groups_and_shapes = None
|
||||
self.lg_loss_scale = initial_lg_loss_scale
|
||||
|
||||
if self.use_fp16:
|
||||
self.param_groups_and_shapes = get_param_groups_and_shapes(
|
||||
self.model.named_parameters()
|
||||
)
|
||||
self.master_params = make_master_params(self.param_groups_and_shapes)
|
||||
self.model.convert_to_fp16()
|
||||
|
||||
def zero_grad(self):
|
||||
zero_grad(self.model_params)
|
||||
|
||||
def backward(self, loss: th.Tensor):
|
||||
if self.use_fp16:
|
||||
loss_scale = 2 ** self.lg_loss_scale
|
||||
(loss * loss_scale).backward()
|
||||
else:
|
||||
loss.backward()
|
||||
|
||||
def optimize(self, opt: th.optim.Optimizer):
|
||||
if self.use_fp16:
|
||||
return self._optimize_fp16(opt)
|
||||
else:
|
||||
return self._optimize_normal(opt)
|
||||
|
||||
def _optimize_fp16(self, opt: th.optim.Optimizer):
|
||||
model_grads_to_master_grads(self.param_groups_and_shapes, self.master_params)
|
||||
grad_norm, param_norm = self._compute_norms(grad_scale=2 ** self.lg_loss_scale)
|
||||
if check_overflow(grad_norm):
|
||||
self.lg_loss_scale -= 1
|
||||
zero_master_grads(self.master_params)
|
||||
return False
|
||||
|
||||
opt.step(grad_scale=2.0 ** self.lg_loss_scale)
|
||||
zero_master_grads(self.master_params)
|
||||
master_params_to_model_params(self.param_groups_and_shapes, self.master_params)
|
||||
self.lg_loss_scale += self.fp16_scale_growth
|
||||
return True
|
||||
|
||||
def _optimize_normal(self, opt: th.optim.Optimizer):
|
||||
grad_norm, param_norm = self._compute_norms()
|
||||
opt.step()
|
||||
return True
|
||||
|
||||
def _compute_norms(self, grad_scale=1.0):
|
||||
grad_norm = 0.0
|
||||
param_norm = 0.0
|
||||
for p in self.master_params:
|
||||
with th.no_grad():
|
||||
param_norm += th.norm(p, p=2, dtype=th.float32).item() ** 2
|
||||
if p.grad is not None:
|
||||
grad_norm += th.norm(p.grad, p=2, dtype=th.float32).item() ** 2
|
||||
return np.sqrt(grad_norm) / grad_scale, np.sqrt(param_norm)
|
||||
|
||||
def master_params_to_state_dict(self, master_params):
|
||||
return master_params_to_state_dict(
|
||||
self.model, self.param_groups_and_shapes, master_params, self.use_fp16
|
||||
)
|
||||
|
||||
def state_dict_to_master_params(self, state_dict):
|
||||
return state_dict_to_master_params(self.model, state_dict, self.use_fp16)
|
||||
|
||||
|
||||
def check_overflow(value):
|
||||
return (value == float("inf")) or (value == -float("inf")) or (value != value)
|
897
codes/models/diffusion/unet_diffusion.py
Normal file
897
codes/models/diffusion/unet_diffusion.py
Normal file
|
@ -0,0 +1,897 @@
|
|||
from abc import abstractmethod
|
||||
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch as th
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchvision # For debugging, not actually used.
|
||||
|
||||
from models.diffusion.fp16_util import convert_module_to_f16, convert_module_to_f32
|
||||
from models.diffusion.nn import (
|
||||
conv_nd,
|
||||
linear,
|
||||
avg_pool_nd,
|
||||
zero_module,
|
||||
normalization,
|
||||
timestep_embedding,
|
||||
)
|
||||
from trainer.networks import register_model
|
||||
from utils.util import checkpoint
|
||||
|
||||
|
||||
class AttentionPool2d(nn.Module):
|
||||
"""
|
||||
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
spacial_dim: int,
|
||||
embed_dim: int,
|
||||
num_heads_channels: int,
|
||||
output_dim: int = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.positional_embedding = nn.Parameter(
|
||||
th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5
|
||||
)
|
||||
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
||||
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
||||
self.num_heads = embed_dim // num_heads_channels
|
||||
self.attention = QKVAttention(self.num_heads)
|
||||
|
||||
def forward(self, x):
|
||||
b, c, *_spatial = x.shape
|
||||
x = x.reshape(b, c, -1) # NC(HW)
|
||||
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
||||
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
||||
x = self.qkv_proj(x)
|
||||
x = self.attention(x)
|
||||
x = self.c_proj(x)
|
||||
return x[:, :, 0]
|
||||
|
||||
|
||||
class TimestepBlock(nn.Module):
|
||||
"""
|
||||
Any module where forward() takes timestep embeddings as a second argument.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def forward(self, x, emb):
|
||||
"""
|
||||
Apply the module to `x` given `emb` timestep embeddings.
|
||||
"""
|
||||
|
||||
|
||||
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
||||
"""
|
||||
A sequential module that passes timestep embeddings to the children that
|
||||
support it as an extra input.
|
||||
"""
|
||||
|
||||
def forward(self, x, emb):
|
||||
for layer in self:
|
||||
if isinstance(layer, TimestepBlock):
|
||||
x = layer(x, emb)
|
||||
else:
|
||||
x = layer(x)
|
||||
return x
|
||||
|
||||
|
||||
class Upsample(nn.Module):
|
||||
"""
|
||||
An upsampling layer with an optional convolution.
|
||||
|
||||
:param channels: channels in the inputs and outputs.
|
||||
:param use_conv: a bool determining if a convolution is applied.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
||||
upsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
if use_conv:
|
||||
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
assert x.shape[1] == self.channels
|
||||
if self.dims == 3:
|
||||
x = F.interpolate(
|
||||
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
||||
)
|
||||
else:
|
||||
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
||||
if self.use_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
"""
|
||||
A downsampling layer with an optional convolution.
|
||||
|
||||
:param channels: channels in the inputs and outputs.
|
||||
:param use_conv: a bool determining if a convolution is applied.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
||||
downsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
stride = 2 if dims != 3 else (1, 2, 2)
|
||||
if use_conv:
|
||||
self.op = conv_nd(
|
||||
dims, self.channels, self.out_channels, 3, stride=stride, padding=1
|
||||
)
|
||||
else:
|
||||
assert self.channels == self.out_channels
|
||||
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
||||
|
||||
def forward(self, x):
|
||||
assert x.shape[1] == self.channels
|
||||
return self.op(x)
|
||||
|
||||
|
||||
class ResBlock(TimestepBlock):
|
||||
"""
|
||||
A residual block that can optionally change the number of channels.
|
||||
|
||||
:param channels: the number of input channels.
|
||||
:param emb_channels: the number of timestep embedding channels.
|
||||
:param dropout: the rate of dropout.
|
||||
:param out_channels: if specified, the number of out channels.
|
||||
:param use_conv: if True and out_channels is specified, use a spatial
|
||||
convolution instead of a smaller 1x1 convolution to change the
|
||||
channels in the skip connection.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D.
|
||||
:param up: if True, use this block for upsampling.
|
||||
:param down: if True, use this block for downsampling.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
emb_channels,
|
||||
dropout,
|
||||
out_channels=None,
|
||||
use_conv=False,
|
||||
use_scale_shift_norm=False,
|
||||
dims=2,
|
||||
up=False,
|
||||
down=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.emb_channels = emb_channels
|
||||
self.dropout = dropout
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.use_scale_shift_norm = use_scale_shift_norm
|
||||
|
||||
self.in_layers = nn.Sequential(
|
||||
normalization(channels),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
||||
)
|
||||
|
||||
self.updown = up or down
|
||||
|
||||
if up:
|
||||
self.h_upd = Upsample(channels, False, dims)
|
||||
self.x_upd = Upsample(channels, False, dims)
|
||||
elif down:
|
||||
self.h_upd = Downsample(channels, False, dims)
|
||||
self.x_upd = Downsample(channels, False, dims)
|
||||
else:
|
||||
self.h_upd = self.x_upd = nn.Identity()
|
||||
|
||||
self.emb_layers = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
linear(
|
||||
emb_channels,
|
||||
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
||||
),
|
||||
)
|
||||
self.out_layers = nn.Sequential(
|
||||
normalization(self.out_channels),
|
||||
nn.SiLU(),
|
||||
nn.Dropout(p=dropout),
|
||||
zero_module(
|
||||
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
||||
),
|
||||
)
|
||||
|
||||
if self.out_channels == channels:
|
||||
self.skip_connection = nn.Identity()
|
||||
elif use_conv:
|
||||
self.skip_connection = conv_nd(
|
||||
dims, channels, self.out_channels, 3, padding=1
|
||||
)
|
||||
else:
|
||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
||||
|
||||
def forward(self, x, emb):
|
||||
"""
|
||||
Apply the block to a Tensor, conditioned on a timestep embedding.
|
||||
|
||||
:param x: an [N x C x ...] Tensor of features.
|
||||
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
return checkpoint(
|
||||
self._forward, x, emb
|
||||
)
|
||||
|
||||
def _forward(self, x, emb):
|
||||
if self.updown:
|
||||
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
||||
h = in_rest(x)
|
||||
h = self.h_upd(h)
|
||||
x = self.x_upd(x)
|
||||
h = in_conv(h)
|
||||
else:
|
||||
h = self.in_layers(x)
|
||||
emb_out = self.emb_layers(emb).type(h.dtype)
|
||||
while len(emb_out.shape) < len(h.shape):
|
||||
emb_out = emb_out[..., None]
|
||||
if self.use_scale_shift_norm:
|
||||
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
||||
scale, shift = th.chunk(emb_out, 2, dim=1)
|
||||
h = out_norm(h) * (1 + scale) + shift
|
||||
h = out_rest(h)
|
||||
else:
|
||||
h = h + emb_out
|
||||
h = self.out_layers(h)
|
||||
return self.skip_connection(x) + h
|
||||
|
||||
|
||||
class AttentionBlock(nn.Module):
|
||||
"""
|
||||
An attention block that allows spatial positions to attend to each other.
|
||||
|
||||
Originally ported from here, but adapted to the N-d case.
|
||||
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
num_heads=1,
|
||||
num_head_channels=-1,
|
||||
use_new_attention_order=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
if num_head_channels == -1:
|
||||
self.num_heads = num_heads
|
||||
else:
|
||||
assert (
|
||||
channels % num_head_channels == 0
|
||||
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
||||
self.num_heads = channels // num_head_channels
|
||||
self.norm = normalization(channels)
|
||||
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
||||
if use_new_attention_order:
|
||||
# split qkv before split heads
|
||||
self.attention = QKVAttention(self.num_heads)
|
||||
else:
|
||||
# split heads before split qkv
|
||||
self.attention = QKVAttentionLegacy(self.num_heads)
|
||||
|
||||
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
||||
|
||||
def forward(self, x):
|
||||
return checkpoint(self._forward, x)
|
||||
|
||||
def _forward(self, x):
|
||||
b, c, *spatial = x.shape
|
||||
x = x.reshape(b, c, -1)
|
||||
qkv = self.qkv(self.norm(x))
|
||||
h = self.attention(qkv)
|
||||
h = self.proj_out(h)
|
||||
return (x + h).reshape(b, c, *spatial)
|
||||
|
||||
|
||||
def count_flops_attn(model, _x, y):
|
||||
"""
|
||||
A counter for the `thop` package to count the operations in an
|
||||
attention operation.
|
||||
Meant to be used like:
|
||||
macs, params = thop.profile(
|
||||
model,
|
||||
inputs=(inputs, timestamps),
|
||||
custom_ops={QKVAttention: QKVAttention.count_flops},
|
||||
)
|
||||
"""
|
||||
b, c, *spatial = y[0].shape
|
||||
num_spatial = int(np.prod(spatial))
|
||||
# We perform two matmuls with the same number of ops.
|
||||
# The first computes the weight matrix, the second computes
|
||||
# the combination of the value vectors.
|
||||
matmul_ops = 2 * b * (num_spatial ** 2) * c
|
||||
model.total_ops += th.DoubleTensor([matmul_ops])
|
||||
|
||||
|
||||
class QKVAttentionLegacy(nn.Module):
|
||||
"""
|
||||
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
||||
"""
|
||||
|
||||
def __init__(self, n_heads):
|
||||
super().__init__()
|
||||
self.n_heads = n_heads
|
||||
|
||||
def forward(self, qkv):
|
||||
"""
|
||||
Apply QKV attention.
|
||||
|
||||
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
||||
:return: an [N x (H * C) x T] tensor after attention.
|
||||
"""
|
||||
bs, width, length = qkv.shape
|
||||
assert width % (3 * self.n_heads) == 0
|
||||
ch = width // (3 * self.n_heads)
|
||||
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
||||
scale = 1 / math.sqrt(math.sqrt(ch))
|
||||
weight = th.einsum(
|
||||
"bct,bcs->bts", q * scale, k * scale
|
||||
) # More stable with f16 than dividing afterwards
|
||||
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
||||
a = th.einsum("bts,bcs->bct", weight, v)
|
||||
return a.reshape(bs, -1, length)
|
||||
|
||||
@staticmethod
|
||||
def count_flops(model, _x, y):
|
||||
return count_flops_attn(model, _x, y)
|
||||
|
||||
|
||||
class QKVAttention(nn.Module):
|
||||
"""
|
||||
A module which performs QKV attention and splits in a different order.
|
||||
"""
|
||||
|
||||
def __init__(self, n_heads):
|
||||
super().__init__()
|
||||
self.n_heads = n_heads
|
||||
|
||||
def forward(self, qkv):
|
||||
"""
|
||||
Apply QKV attention.
|
||||
|
||||
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
||||
:return: an [N x (H * C) x T] tensor after attention.
|
||||
"""
|
||||
bs, width, length = qkv.shape
|
||||
assert width % (3 * self.n_heads) == 0
|
||||
ch = width // (3 * self.n_heads)
|
||||
q, k, v = qkv.chunk(3, dim=1)
|
||||
scale = 1 / math.sqrt(math.sqrt(ch))
|
||||
weight = th.einsum(
|
||||
"bct,bcs->bts",
|
||||
(q * scale).view(bs * self.n_heads, ch, length),
|
||||
(k * scale).view(bs * self.n_heads, ch, length),
|
||||
) # More stable with f16 than dividing afterwards
|
||||
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
||||
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
||||
return a.reshape(bs, -1, length)
|
||||
|
||||
@staticmethod
|
||||
def count_flops(model, _x, y):
|
||||
return count_flops_attn(model, _x, y)
|
||||
|
||||
|
||||
class UNetModel(nn.Module):
|
||||
"""
|
||||
The full UNet model with attention and timestep embedding.
|
||||
|
||||
:param in_channels: channels in the input Tensor.
|
||||
:param model_channels: base channel count for the model.
|
||||
:param out_channels: channels in the output Tensor.
|
||||
:param num_res_blocks: number of residual blocks per downsample.
|
||||
:param attention_resolutions: a collection of downsample rates at which
|
||||
attention will take place. May be a set, list, or tuple.
|
||||
For example, if this contains 4, then at 4x downsampling, attention
|
||||
will be used.
|
||||
:param dropout: the dropout probability.
|
||||
:param channel_mult: channel multiplier for each level of the UNet.
|
||||
:param conv_resample: if True, use learned convolutions for upsampling and
|
||||
downsampling.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D.
|
||||
:param num_classes: if specified (as an int), then this model will be
|
||||
class-conditional with `num_classes` classes.
|
||||
:param num_heads: the number of attention heads in each attention layer.
|
||||
:param num_heads_channels: if specified, ignore num_heads and instead use
|
||||
a fixed channel width per attention head.
|
||||
:param num_heads_upsample: works with num_heads to set a different number
|
||||
of heads for upsampling. Deprecated.
|
||||
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
||||
:param resblock_updown: use residual blocks for up/downsampling.
|
||||
:param use_new_attention_order: use a different attention pattern for potentially
|
||||
increased efficiency.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
image_size,
|
||||
in_channels,
|
||||
model_channels,
|
||||
out_channels,
|
||||
num_res_blocks,
|
||||
attention_resolutions,
|
||||
dropout=0,
|
||||
channel_mult=(1, 2, 4, 8),
|
||||
conv_resample=True,
|
||||
dims=2,
|
||||
num_classes=None,
|
||||
use_fp16=False,
|
||||
num_heads=1,
|
||||
num_head_channels=-1,
|
||||
num_heads_upsample=-1,
|
||||
use_scale_shift_norm=False,
|
||||
resblock_updown=False,
|
||||
use_new_attention_order=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if num_heads_upsample == -1:
|
||||
num_heads_upsample = num_heads
|
||||
|
||||
self.image_size = image_size
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
self.out_channels = out_channels
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.attention_resolutions = attention_resolutions
|
||||
self.dropout = dropout
|
||||
self.channel_mult = channel_mult
|
||||
self.conv_resample = conv_resample
|
||||
self.num_classes = num_classes
|
||||
self.dtype = th.float16 if use_fp16 else th.float32
|
||||
self.num_heads = num_heads
|
||||
self.num_head_channels = num_head_channels
|
||||
self.num_heads_upsample = num_heads_upsample
|
||||
|
||||
time_embed_dim = model_channels * 4
|
||||
self.time_embed = nn.Sequential(
|
||||
linear(model_channels, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, time_embed_dim),
|
||||
)
|
||||
|
||||
if self.num_classes is not None:
|
||||
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
||||
|
||||
self.input_blocks = nn.ModuleList(
|
||||
[
|
||||
TimestepEmbedSequential(
|
||||
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
||||
)
|
||||
]
|
||||
)
|
||||
self._feature_size = model_channels
|
||||
input_block_chans = [model_channels]
|
||||
ch = model_channels
|
||||
ds = 1
|
||||
for level, mult in enumerate(channel_mult):
|
||||
for _ in range(num_res_blocks):
|
||||
layers = [
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=mult * model_channels,
|
||||
dims=dims,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
)
|
||||
]
|
||||
ch = mult * model_channels
|
||||
if ds in attention_resolutions:
|
||||
layers.append(
|
||||
AttentionBlock(
|
||||
ch,
|
||||
num_heads=num_heads,
|
||||
num_head_channels=num_head_channels,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
)
|
||||
)
|
||||
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self._feature_size += ch
|
||||
input_block_chans.append(ch)
|
||||
if level != len(channel_mult) - 1:
|
||||
out_ch = ch
|
||||
self.input_blocks.append(
|
||||
TimestepEmbedSequential(
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=out_ch,
|
||||
dims=dims,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
down=True,
|
||||
)
|
||||
if resblock_updown
|
||||
else Downsample(
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch
|
||||
)
|
||||
)
|
||||
)
|
||||
ch = out_ch
|
||||
input_block_chans.append(ch)
|
||||
ds *= 2
|
||||
self._feature_size += ch
|
||||
|
||||
self.middle_block = TimestepEmbedSequential(
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
dims=dims,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
),
|
||||
AttentionBlock(
|
||||
ch,
|
||||
num_heads=num_heads,
|
||||
num_head_channels=num_head_channels,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
),
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
dims=dims,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
),
|
||||
)
|
||||
self._feature_size += ch
|
||||
|
||||
self.output_blocks = nn.ModuleList([])
|
||||
for level, mult in list(enumerate(channel_mult))[::-1]:
|
||||
for i in range(num_res_blocks + 1):
|
||||
ich = input_block_chans.pop()
|
||||
layers = [
|
||||
ResBlock(
|
||||
ch + ich,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=model_channels * mult,
|
||||
dims=dims,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
)
|
||||
]
|
||||
ch = model_channels * mult
|
||||
if ds in attention_resolutions:
|
||||
layers.append(
|
||||
AttentionBlock(
|
||||
ch,
|
||||
num_heads=num_heads_upsample,
|
||||
num_head_channels=num_head_channels,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
)
|
||||
)
|
||||
if level and i == num_res_blocks:
|
||||
out_ch = ch
|
||||
layers.append(
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=out_ch,
|
||||
dims=dims,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
up=True,
|
||||
)
|
||||
if resblock_updown
|
||||
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
||||
)
|
||||
ds //= 2
|
||||
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self._feature_size += ch
|
||||
|
||||
self.out = nn.Sequential(
|
||||
normalization(ch),
|
||||
nn.SiLU(),
|
||||
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
||||
)
|
||||
|
||||
def convert_to_fp16(self):
|
||||
"""
|
||||
Convert the torso of the model to float16.
|
||||
"""
|
||||
self.input_blocks.apply(convert_module_to_f16)
|
||||
self.middle_block.apply(convert_module_to_f16)
|
||||
self.output_blocks.apply(convert_module_to_f16)
|
||||
|
||||
def convert_to_fp32(self):
|
||||
"""
|
||||
Convert the torso of the model to float32.
|
||||
"""
|
||||
self.input_blocks.apply(convert_module_to_f32)
|
||||
self.middle_block.apply(convert_module_to_f32)
|
||||
self.output_blocks.apply(convert_module_to_f32)
|
||||
|
||||
def forward(self, x, timesteps, y=None):
|
||||
"""
|
||||
Apply the model to an input batch.
|
||||
|
||||
:param x: an [N x C x ...] Tensor of inputs.
|
||||
:param timesteps: a 1-D batch of timesteps.
|
||||
:param y: an [N] Tensor of labels, if class-conditional.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
assert (y is not None) == (
|
||||
self.num_classes is not None
|
||||
), "must specify y if and only if the model is class-conditional"
|
||||
|
||||
hs = []
|
||||
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
||||
|
||||
if self.num_classes is not None:
|
||||
assert y.shape == (x.shape[0],)
|
||||
emb = emb + self.label_emb(y)
|
||||
|
||||
h = x.type(self.dtype)
|
||||
for module in self.input_blocks:
|
||||
h = module(h, emb)
|
||||
hs.append(h)
|
||||
h = self.middle_block(h, emb)
|
||||
for module in self.output_blocks:
|
||||
h = th.cat([h, hs.pop()], dim=1)
|
||||
h = module(h, emb)
|
||||
h = h.type(x.dtype)
|
||||
return self.out(h)
|
||||
|
||||
|
||||
class SuperResModel(UNetModel):
|
||||
"""
|
||||
A UNetModel that performs super-resolution.
|
||||
|
||||
Expects an extra kwarg `low_res` to condition on a low-resolution image.
|
||||
"""
|
||||
|
||||
def __init__(self, image_size, in_channels, *args, **kwargs):
|
||||
super().__init__(image_size, in_channels * 2, *args, **kwargs)
|
||||
|
||||
def forward(self, x, timesteps, low_res=None, **kwargs):
|
||||
_, _, new_height, new_width = x.shape
|
||||
upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear")
|
||||
x = th.cat([x, upsampled], dim=1)
|
||||
res = super().forward(x, timesteps, **kwargs)
|
||||
return res
|
||||
|
||||
|
||||
class EncoderUNetModel(nn.Module):
|
||||
"""
|
||||
The half UNet model with attention and timestep embedding.
|
||||
|
||||
For usage, see UNet.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
image_size,
|
||||
in_channels,
|
||||
model_channels,
|
||||
out_channels,
|
||||
num_res_blocks,
|
||||
attention_resolutions,
|
||||
dropout=0,
|
||||
channel_mult=(1, 2, 4, 8),
|
||||
conv_resample=True,
|
||||
dims=2,
|
||||
use_fp16=False,
|
||||
num_heads=1,
|
||||
num_head_channels=-1,
|
||||
num_heads_upsample=-1,
|
||||
use_scale_shift_norm=False,
|
||||
resblock_updown=False,
|
||||
use_new_attention_order=False,
|
||||
pool="adaptive",
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if num_heads_upsample == -1:
|
||||
num_heads_upsample = num_heads
|
||||
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
self.out_channels = out_channels
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.attention_resolutions = attention_resolutions
|
||||
self.dropout = dropout
|
||||
self.channel_mult = channel_mult
|
||||
self.conv_resample = conv_resample
|
||||
self.dtype = th.float16 if use_fp16 else th.float32
|
||||
self.num_heads = num_heads
|
||||
self.num_head_channels = num_head_channels
|
||||
self.num_heads_upsample = num_heads_upsample
|
||||
|
||||
time_embed_dim = model_channels * 4
|
||||
self.time_embed = nn.Sequential(
|
||||
linear(model_channels, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, time_embed_dim),
|
||||
)
|
||||
|
||||
self.input_blocks = nn.ModuleList(
|
||||
[
|
||||
TimestepEmbedSequential(
|
||||
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
||||
)
|
||||
]
|
||||
)
|
||||
self._feature_size = model_channels
|
||||
input_block_chans = [model_channels]
|
||||
ch = model_channels
|
||||
ds = 1
|
||||
for level, mult in enumerate(channel_mult):
|
||||
for _ in range(num_res_blocks):
|
||||
layers = [
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=mult * model_channels,
|
||||
dims=dims,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
)
|
||||
]
|
||||
ch = mult * model_channels
|
||||
if ds in attention_resolutions:
|
||||
layers.append(
|
||||
AttentionBlock(
|
||||
ch,
|
||||
num_heads=num_heads,
|
||||
num_head_channels=num_head_channels,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
)
|
||||
)
|
||||
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self._feature_size += ch
|
||||
input_block_chans.append(ch)
|
||||
if level != len(channel_mult) - 1:
|
||||
out_ch = ch
|
||||
self.input_blocks.append(
|
||||
TimestepEmbedSequential(
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=out_ch,
|
||||
dims=dims,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
down=True,
|
||||
)
|
||||
if resblock_updown
|
||||
else Downsample(
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch
|
||||
)
|
||||
)
|
||||
)
|
||||
ch = out_ch
|
||||
input_block_chans.append(ch)
|
||||
ds *= 2
|
||||
self._feature_size += ch
|
||||
|
||||
self.middle_block = TimestepEmbedSequential(
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
dims=dims,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
),
|
||||
AttentionBlock(
|
||||
ch,
|
||||
num_heads=num_heads,
|
||||
num_head_channels=num_head_channels,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
),
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
dims=dims,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
),
|
||||
)
|
||||
self._feature_size += ch
|
||||
self.pool = pool
|
||||
if pool == "adaptive":
|
||||
self.out = nn.Sequential(
|
||||
normalization(ch),
|
||||
nn.SiLU(),
|
||||
nn.AdaptiveAvgPool2d((1, 1)),
|
||||
zero_module(conv_nd(dims, ch, out_channels, 1)),
|
||||
nn.Flatten(),
|
||||
)
|
||||
elif pool == "attention":
|
||||
assert num_head_channels != -1
|
||||
self.out = nn.Sequential(
|
||||
normalization(ch),
|
||||
nn.SiLU(),
|
||||
AttentionPool2d(
|
||||
(image_size // ds), ch, num_head_channels, out_channels
|
||||
),
|
||||
)
|
||||
elif pool == "spatial":
|
||||
self.out = nn.Sequential(
|
||||
nn.Linear(self._feature_size, 2048),
|
||||
nn.ReLU(),
|
||||
nn.Linear(2048, self.out_channels),
|
||||
)
|
||||
elif pool == "spatial_v2":
|
||||
self.out = nn.Sequential(
|
||||
nn.Linear(self._feature_size, 2048),
|
||||
normalization(2048),
|
||||
nn.SiLU(),
|
||||
nn.Linear(2048, self.out_channels),
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(f"Unexpected {pool} pooling")
|
||||
|
||||
def convert_to_fp16(self):
|
||||
"""
|
||||
Convert the torso of the model to float16.
|
||||
"""
|
||||
self.input_blocks.apply(convert_module_to_f16)
|
||||
self.middle_block.apply(convert_module_to_f16)
|
||||
|
||||
def convert_to_fp32(self):
|
||||
"""
|
||||
Convert the torso of the model to float32.
|
||||
"""
|
||||
self.input_blocks.apply(convert_module_to_f32)
|
||||
self.middle_block.apply(convert_module_to_f32)
|
||||
|
||||
def forward(self, x, timesteps):
|
||||
"""
|
||||
Apply the model to an input batch.
|
||||
|
||||
:param x: an [N x C x ...] Tensor of inputs.
|
||||
:param timesteps: a 1-D batch of timesteps.
|
||||
:return: an [N x K] Tensor of outputs.
|
||||
"""
|
||||
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
||||
|
||||
results = []
|
||||
h = x.type(self.dtype)
|
||||
for module in self.input_blocks:
|
||||
h = module(h, emb)
|
||||
if self.pool.startswith("spatial"):
|
||||
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
||||
h = self.middle_block(h, emb)
|
||||
if self.pool.startswith("spatial"):
|
||||
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
||||
h = th.cat(results, axis=-1)
|
||||
return self.out(h)
|
||||
else:
|
||||
h = h.type(x.dtype)
|
||||
return self.out(h)
|
||||
|
||||
@register_model
|
||||
def register_unet_diffusion(opt_net, opt):
|
||||
return SuperResModel(**opt_net['args'])
|
||||
|
||||
if __name__ == '__main__':
|
||||
attention_ds = []
|
||||
for res in "16,8".split(","):
|
||||
attention_ds.append(128 // int(res))
|
||||
srm = SuperResModel(image_size=128, in_channels=3, model_channels=64, out_channels=3, num_res_blocks=1, attention_resolutions=attention_ds, num_heads=4,
|
||||
num_heads_upsample=-1, use_scale_shift_norm=True)
|
||||
x = torch.randn(1,3,128,128)
|
||||
l = torch.randn(1,3,32,32)
|
||||
ts = torch.LongTensor([555])
|
||||
y = srm(x, ts, low_res=l)
|
||||
print(y.shape, y.mean(), y.std(), y.min(), y.max())
|
|
@ -302,7 +302,7 @@ class Trainer:
|
|||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_imgset_rrdb_diffusion.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_imgset_unet_diffusion.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
args = parser.parse_args()
|
||||
|
|
|
@ -41,7 +41,7 @@ class GaussianDiffusionInferenceInjector(Injector):
|
|||
self.generator = opt['generator']
|
||||
self.output_shape = opt['output_shape']
|
||||
opt['diffusion_args']['betas'] = get_named_beta_schedule(**opt['beta_schedule'])
|
||||
opt['diffusion_args']['use_timesteps'] = space_timesteps(opt['beta_schedule']['num_diffusion_timesteps'], [opt['beta_schedule']['num_diffusion_timesteps']]) # TODO: Figure out how these work and specify them differently.
|
||||
opt['diffusion_args']['use_timesteps'] = space_timesteps(opt['beta_schedule']['num_diffusion_timesteps'], [opt_get(opt, ['respaced_timestep_spacing'], opt['beta_schedule']['num_diffusion_timesteps'])]) # TODO: Figure out how these work and specify them differently.
|
||||
self.diffusion = SpacedDiffusion(**opt['diffusion_args'])
|
||||
self.model_input_keys = opt_get(opt, ['model_input_keys'], [])
|
||||
|
||||
|
|
|
@ -169,6 +169,8 @@ class ConfigurableStep(Module):
|
|||
'before' in inj.opt.keys() and self.env['step'] > inj.opt['before'] or \
|
||||
'every' in inj.opt.keys() and self.env['step'] % inj.opt['every'] != 0:
|
||||
continue
|
||||
if 'no_accum' in inj.opt.keys() and grad_accum_step > 0:
|
||||
continue
|
||||
injected = inj(local_state)
|
||||
local_state.update(injected)
|
||||
new_state.update(injected)
|
||||
|
|
Loading…
Reference in New Issue
Block a user