forked from mrq/bitsandbytes-rocm
Merge pull request #25 from TimDettmers/remove_unused_code
Remove unused code, switch to warnings
This commit is contained in:
commit
f0ae860c86
|
@ -3,8 +3,9 @@
|
|||
# cli()
|
||||
import os
|
||||
import sys
|
||||
import torch
|
||||
from warnings import warn
|
||||
|
||||
import torch
|
||||
|
||||
HEADER_WIDTH = 60
|
||||
|
||||
|
@ -32,8 +33,6 @@ print()
|
|||
from . import COMPILED_WITH_CUDA, PACKAGE_GITHUB_URL
|
||||
from .cuda_setup.main import get_compute_capabilities, get_cuda_lib_handle
|
||||
from .cuda_setup.env_vars import to_be_ignored
|
||||
from .utils import print_stderr
|
||||
|
||||
|
||||
print_header("POTENTIALLY LIBRARY-PATH-LIKE ENV VARS")
|
||||
for k, v in os.environ.items():
|
||||
|
@ -84,7 +83,7 @@ try:
|
|||
|
||||
except ImportError:
|
||||
print()
|
||||
print_stderr(
|
||||
warn(
|
||||
f"WARNING: {__package__} is currently running as CPU-only!\n"
|
||||
"Therefore, 8-bit optimizers and GPU quantization are unavailable.\n\n"
|
||||
f"If you think that this is so erroneously,\nplease report an issue!"
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
import operator
|
||||
import torch
|
||||
import bitsandbytes as bnb
|
||||
import bitsandbytes.functional as F
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
@ -378,9 +377,6 @@ class MatMul8bitLt(torch.autograd.Function):
|
|||
return grad_A, grad_B, None, grad_bias, None
|
||||
|
||||
|
||||
matmul = MatMul8bitLt.apply
|
||||
|
||||
|
||||
def matmul(
|
||||
A: tensor,
|
||||
B: tensor,
|
||||
|
|
|
@ -1,79 +0,0 @@
|
|||
import ctypes
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
|
||||
@dataclass
|
||||
class CudaLibVals:
|
||||
# code bits taken from
|
||||
# https://gist.github.com/f0k/63a664160d016a491b2cbea15913d549
|
||||
|
||||
nGpus: ctypes.c_int = field(default=ctypes.c_int())
|
||||
cc_major: ctypes.c_int = field(default=ctypes.c_int())
|
||||
cc_minor: ctypes.c_int = field(default=ctypes.c_int())
|
||||
device: ctypes.c_int = field(default=ctypes.c_int())
|
||||
error_str: ctypes.c_char_p = field(default=ctypes.c_char_p())
|
||||
cuda: ctypes.CDLL = field(init=False, repr=False)
|
||||
ccs: List[str, ...] = field(init=False)
|
||||
|
||||
def _initialize_driver_API(self):
|
||||
self.check_cuda_result(self.cuda.cuInit(0))
|
||||
|
||||
def _load_cuda_lib(self):
|
||||
"""
|
||||
1. find libcuda.so library (GPU driver) (/usr/lib)
|
||||
init_device -> init variables -> call function by reference
|
||||
"""
|
||||
libnames = "libcuda.so"
|
||||
for libname in libnames:
|
||||
try:
|
||||
self.cuda = ctypes.CDLL(libname)
|
||||
except OSError:
|
||||
continue
|
||||
else:
|
||||
break
|
||||
else:
|
||||
raise OSError("could not load any of: " + " ".join(libnames))
|
||||
|
||||
def call_cuda_func(self, function_obj, **kwargs):
|
||||
CUDA_SUCCESS = 0 # constant taken from cuda.h
|
||||
pass
|
||||
# if (CUDA_SUCCESS := function_obj(
|
||||
|
||||
def _error_handle(cuda_lib_call_return_value):
|
||||
"""
|
||||
2. call extern C function to determine CC
|
||||
(see https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE__DEPRECATED.html)
|
||||
"""
|
||||
CUDA_SUCCESS = 0 # constant taken from cuda.h
|
||||
|
||||
if cuda_lib_call_return_value != CUDA_SUCCESS:
|
||||
self.cuda.cuGetErrorString(
|
||||
cuda_lib_call_return_value,
|
||||
ctypes.byref(self.error_str),
|
||||
)
|
||||
print("Count not initialize CUDA - failure!")
|
||||
raise Exception("CUDA exception!")
|
||||
return cuda_lib_call_return_value
|
||||
|
||||
def __post_init__(self):
|
||||
self._load_cuda_lib()
|
||||
self._initialize_driver_API()
|
||||
self.check_cuda_result(
|
||||
self.cuda, self.cuda.cuDeviceGetCount(ctypes.byref(self.nGpus))
|
||||
)
|
||||
tmp_ccs = []
|
||||
for gpu_index in range(self.nGpus.value):
|
||||
check_cuda_result(
|
||||
self.cuda,
|
||||
self.cuda.cuDeviceGet(ctypes.byref(self.device), gpu_index),
|
||||
)
|
||||
check_cuda_result(
|
||||
self.cuda,
|
||||
self.cuda.cuDeviceComputeCapability(
|
||||
ctypes.byref(self.cc_major),
|
||||
ctypes.byref(self.cc_minor),
|
||||
self.device,
|
||||
),
|
||||
)
|
||||
tmp_ccs.append(f"{self.cc_major.value}.{self.cc_minor.value}")
|
||||
self.ccs = sorted(tmp_ccs, reverse=True)
|
|
@ -17,10 +17,7 @@ evaluation:
|
|||
"""
|
||||
|
||||
import ctypes
|
||||
import torch
|
||||
from pathlib import Path
|
||||
|
||||
from ..utils import execute_and_return
|
||||
from .paths import determine_cuda_runtime_lib_path
|
||||
|
||||
|
||||
|
@ -81,7 +78,6 @@ def get_compute_capabilities(cuda):
|
|||
cc_major = ctypes.c_int()
|
||||
cc_minor = ctypes.c_int()
|
||||
|
||||
result = ctypes.c_int()
|
||||
device = ctypes.c_int()
|
||||
|
||||
check_cuda_result(cuda, cuda.cuDeviceGetCount(ctypes.byref(nGpus)))
|
||||
|
|
|
@ -2,23 +2,11 @@ from pathlib import Path
|
|||
from typing import Set, Union
|
||||
from warnings import warn
|
||||
|
||||
from ..utils import print_stderr
|
||||
from .env_vars import get_potentially_lib_path_containing_env_vars
|
||||
|
||||
|
||||
CUDA_RUNTIME_LIB: str = "libcudart.so"
|
||||
|
||||
|
||||
def purge_unwanted_semicolon(tentative_path: Path) -> Path:
|
||||
"""
|
||||
Special function to handle the following exception:
|
||||
__LMOD_REF_COUNT_PATH=/sw/cuda/11.6.2/bin:2;/mmfs1/home/dettmers/git/sched/bin:1;/mmfs1/home/dettmers/data/anaconda3/bin:1;/mmfs1/home/dettmers/data/anaconda3/condabin:1;/mmfs1/home/dettmers/.local/bin:1;/mmfs1/home/dettmers/bin:1;/usr/local/bin:1;/usr/bin:1;/usr/local/sbin:1;/usr/sbin:1;/mmfs1/home/dettmers/.fzf/bin:1;/mmfs1/home/dettmers/data/local/cuda-11.4/bin:1
|
||||
"""
|
||||
# if ';' in str(tentative_path):
|
||||
# path_as_str, _ = str(tentative_path).split(';')
|
||||
pass
|
||||
|
||||
|
||||
def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
|
||||
return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
|
||||
|
||||
|
@ -29,7 +17,7 @@ def remove_non_existent_dirs(candidate_paths: Set[Path]) -> Set[Path]:
|
|||
}
|
||||
|
||||
if non_existent_directories:
|
||||
print_stderr(
|
||||
warn(
|
||||
"WARNING: The following directories listed in your path were found to "
|
||||
f"be non-existent: {non_existent_directories}"
|
||||
)
|
||||
|
@ -117,8 +105,6 @@ def determine_cuda_runtime_lib_path() -> Union[Path, None]:
|
|||
if env_var not in {"CONDA_PREFIX", "LD_LIBRARY_PATH"}
|
||||
}
|
||||
|
||||
|
||||
|
||||
cuda_runtime_libs = set()
|
||||
for env_var, value in remaining_candidate_env_vars.items():
|
||||
cuda_runtime_libs.update(find_cuda_lib_in(value))
|
||||
|
|
|
@ -5,7 +5,6 @@
|
|||
import ctypes as ct
|
||||
import operator
|
||||
import random
|
||||
import math
|
||||
import torch
|
||||
|
||||
from typing import Tuple
|
||||
|
@ -243,23 +242,6 @@ def get_transform_func(dtype, orderA, orderOut, transpose=False):
|
|||
return getattr(lib, name)
|
||||
|
||||
|
||||
class GlobalData(object):
|
||||
_instance = None
|
||||
|
||||
def __init__(self):
|
||||
raise RuntimeError("Call get_instance() instead")
|
||||
|
||||
def initialize(self):
|
||||
self.data = {}
|
||||
|
||||
@classmethod
|
||||
def get_instance(cls):
|
||||
if cls._instance is None:
|
||||
cls._instance = cls.__new__(cls)
|
||||
cls._instance.initialize()
|
||||
return cls._instance
|
||||
|
||||
|
||||
def get_transform_buffer(
|
||||
shape, dtype, device, to_order, from_order="row", transpose=False
|
||||
):
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
import shlex
|
||||
import subprocess
|
||||
import sys
|
||||
from typing import Tuple
|
||||
|
||||
|
||||
|
@ -22,11 +21,3 @@ def execute_and_return(command_string: str) -> Tuple[str, str]:
|
|||
|
||||
std_out, std_err = execute_and_return_decoded_std_streams(command_string)
|
||||
return std_out, std_err
|
||||
|
||||
|
||||
def print_stderr(s: str) -> None:
|
||||
print(s, file=sys.stderr)
|
||||
|
||||
|
||||
def warn_of_missing_prerequisite(s: str) -> None:
|
||||
print_stderr("WARNING, missing pre-requisite: " + s)
|
||||
|
|
Loading…
Reference in New Issue
Block a user