2022-01-18 15:38:24 +00:00
|
|
|
import operator
|
|
|
|
from collections import OrderedDict
|
|
|
|
|
|
|
|
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
|
|
|
from models.diffusion.unet_diffusion import AttentionPool2d, AttentionBlock, TimestepEmbedSequential, \
|
|
|
|
Downsample, Upsample, TimestepBlock
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
from models.gpt_voice.mini_encoder import AudioMiniEncoder, EmbeddingCombiner
|
2022-01-19 07:35:08 +00:00
|
|
|
from scripts.audio.gen.use_diffuse_tts import ceil_multiple
|
2022-01-18 15:38:24 +00:00
|
|
|
from trainer.networks import register_model
|
|
|
|
from utils.util import checkpoint
|
|
|
|
|
|
|
|
|
|
|
|
class ResBlock(TimestepBlock):
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
channels,
|
|
|
|
emb_channels,
|
|
|
|
dropout,
|
|
|
|
out_channels=None,
|
|
|
|
dims=2,
|
|
|
|
kernel_size=3,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
self.channels = channels
|
|
|
|
self.emb_channels = emb_channels
|
|
|
|
self.dropout = dropout
|
|
|
|
self.out_channels = out_channels or channels
|
|
|
|
padding = 1 if kernel_size == 3 else 2
|
|
|
|
|
|
|
|
self.in_layers = nn.Sequential(
|
|
|
|
normalization(channels),
|
|
|
|
nn.SiLU(),
|
|
|
|
conv_nd(dims, channels, self.out_channels, 1, padding=0),
|
|
|
|
)
|
|
|
|
|
|
|
|
self.emb_layers = nn.Sequential(
|
|
|
|
nn.SiLU(),
|
|
|
|
linear(
|
|
|
|
emb_channels,
|
|
|
|
self.out_channels,
|
|
|
|
),
|
|
|
|
)
|
|
|
|
self.out_layers = nn.Sequential(
|
|
|
|
normalization(self.out_channels),
|
|
|
|
nn.SiLU(),
|
|
|
|
nn.Dropout(p=dropout),
|
|
|
|
zero_module(
|
|
|
|
conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding)
|
|
|
|
),
|
|
|
|
)
|
|
|
|
|
|
|
|
if self.out_channels == channels:
|
|
|
|
self.skip_connection = nn.Identity()
|
|
|
|
else:
|
|
|
|
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
|
|
|
|
|
|
|
def forward(self, x, emb):
|
|
|
|
"""
|
|
|
|
Apply the block to a Tensor, conditioned on a timestep embedding.
|
|
|
|
|
|
|
|
:param x: an [N x C x ...] Tensor of features.
|
|
|
|
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
|
|
|
:return: an [N x C x ...] Tensor of outputs.
|
|
|
|
"""
|
2022-01-22 16:14:50 +00:00
|
|
|
return checkpoint(
|
|
|
|
self._forward, x, emb
|
|
|
|
)
|
|
|
|
|
|
|
|
def _forward(self, x, emb):
|
2022-01-18 15:38:24 +00:00
|
|
|
h = self.in_layers(x)
|
|
|
|
emb_out = self.emb_layers(emb).type(h.dtype)
|
|
|
|
while len(emb_out.shape) < len(h.shape):
|
|
|
|
emb_out = emb_out[..., None]
|
|
|
|
h = h + emb_out
|
|
|
|
h = self.out_layers(h)
|
|
|
|
return self.skip_connection(x) + h
|
|
|
|
|
|
|
|
|
|
|
|
class DiffusionTts(nn.Module):
|
|
|
|
"""
|
|
|
|
The full UNet model with attention and timestep embedding.
|
|
|
|
|
|
|
|
Customized to be conditioned on an aligned token prior.
|
|
|
|
|
|
|
|
:param in_channels: channels in the input Tensor.
|
|
|
|
:param num_tokens: number of tokens (e.g. characters) which can be provided.
|
|
|
|
:param model_channels: base channel count for the model.
|
|
|
|
:param out_channels: channels in the output Tensor.
|
|
|
|
:param num_res_blocks: number of residual blocks per downsample.
|
|
|
|
:param attention_resolutions: a collection of downsample rates at which
|
|
|
|
attention will take place. May be a set, list, or tuple.
|
|
|
|
For example, if this contains 4, then at 4x downsampling, attention
|
|
|
|
will be used.
|
|
|
|
:param dropout: the dropout probability.
|
|
|
|
:param channel_mult: channel multiplier for each level of the UNet.
|
|
|
|
:param conv_resample: if True, use learned convolutions for upsampling and
|
|
|
|
downsampling.
|
|
|
|
:param dims: determines if the signal is 1D, 2D, or 3D.
|
|
|
|
:param num_heads: the number of attention heads in each attention layer.
|
|
|
|
:param num_heads_channels: if specified, ignore num_heads and instead use
|
|
|
|
a fixed channel width per attention head.
|
|
|
|
:param num_heads_upsample: works with num_heads to set a different number
|
|
|
|
of heads for upsampling. Deprecated.
|
|
|
|
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
|
|
|
:param resblock_updown: use residual blocks for up/downsampling.
|
|
|
|
:param use_new_attention_order: use a different attention pattern for potentially
|
|
|
|
increased efficiency.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
model_channels,
|
|
|
|
in_channels=1,
|
2022-01-25 21:26:21 +00:00
|
|
|
num_tokens=32,
|
2022-01-18 15:38:24 +00:00
|
|
|
out_channels=2, # mean and variance
|
|
|
|
dropout=0,
|
|
|
|
# res 1, 2, 4, 8,16,32,64,128,256,512, 1K, 2K
|
|
|
|
channel_mult= (1,1.5,2, 3, 4, 6, 8, 12, 16, 24, 32, 48),
|
|
|
|
num_res_blocks=(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2),
|
|
|
|
# spec_cond: 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0)
|
|
|
|
# attn: 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1
|
|
|
|
token_conditioning_resolutions=(1,16,),
|
|
|
|
attention_resolutions=(512,1024,2048),
|
|
|
|
conv_resample=True,
|
|
|
|
dims=1,
|
|
|
|
use_fp16=False,
|
|
|
|
num_heads=1,
|
|
|
|
num_head_channels=-1,
|
|
|
|
num_heads_upsample=-1,
|
|
|
|
kernel_size=3,
|
|
|
|
scale_factor=2,
|
|
|
|
conditioning_inputs_provided=True,
|
|
|
|
time_embed_dim_multiplier=4,
|
2022-01-25 21:26:21 +00:00
|
|
|
nil_guidance_fwd_proportion=.3,
|
2022-01-18 15:38:24 +00:00
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
if num_heads_upsample == -1:
|
|
|
|
num_heads_upsample = num_heads
|
|
|
|
|
|
|
|
self.in_channels = in_channels
|
|
|
|
self.model_channels = model_channels
|
|
|
|
self.out_channels = out_channels
|
|
|
|
self.attention_resolutions = attention_resolutions
|
|
|
|
self.dropout = dropout
|
|
|
|
self.channel_mult = channel_mult
|
|
|
|
self.conv_resample = conv_resample
|
|
|
|
self.dtype = torch.float16 if use_fp16 else torch.float32
|
|
|
|
self.num_heads = num_heads
|
|
|
|
self.num_head_channels = num_head_channels
|
|
|
|
self.num_heads_upsample = num_heads_upsample
|
|
|
|
self.dims = dims
|
2022-01-25 21:26:21 +00:00
|
|
|
self.nil_guidance_fwd_proportion = nil_guidance_fwd_proportion
|
|
|
|
self.mask_token_id = num_tokens
|
2022-01-18 15:38:24 +00:00
|
|
|
|
|
|
|
padding = 1 if kernel_size == 3 else 2
|
|
|
|
|
|
|
|
time_embed_dim = model_channels * time_embed_dim_multiplier
|
|
|
|
self.time_embed = nn.Sequential(
|
|
|
|
linear(model_channels, time_embed_dim),
|
|
|
|
nn.SiLU(),
|
|
|
|
linear(time_embed_dim, time_embed_dim),
|
|
|
|
)
|
|
|
|
|
|
|
|
self.conditioning_enabled = conditioning_inputs_provided
|
|
|
|
if conditioning_inputs_provided:
|
|
|
|
self.contextual_embedder = AudioMiniEncoder(in_channels, time_embed_dim, base_channels=32, depth=6, resnet_blocks=1,
|
|
|
|
attn_blocks=2, num_attn_heads=2, dropout=dropout, downsample_factor=4, kernel_size=5)
|
|
|
|
|
|
|
|
self.input_blocks = nn.ModuleList(
|
|
|
|
[
|
|
|
|
TimestepEmbedSequential(
|
|
|
|
conv_nd(dims, in_channels, model_channels, kernel_size, padding=padding)
|
|
|
|
)
|
|
|
|
]
|
|
|
|
)
|
|
|
|
token_conditioning_blocks = []
|
|
|
|
self._feature_size = model_channels
|
|
|
|
input_block_chans = [model_channels]
|
|
|
|
ch = model_channels
|
|
|
|
ds = 1
|
|
|
|
|
|
|
|
for level, (mult, num_blocks) in enumerate(zip(channel_mult, num_res_blocks)):
|
|
|
|
if ds in token_conditioning_resolutions:
|
2022-01-25 21:26:21 +00:00
|
|
|
token_conditioning_block = nn.Embedding(num_tokens+1, ch)
|
2022-01-18 15:38:24 +00:00
|
|
|
token_conditioning_block.weight.data.normal_(mean=0.0, std=.02)
|
|
|
|
self.input_blocks.append(token_conditioning_block)
|
|
|
|
token_conditioning_blocks.append(token_conditioning_block)
|
|
|
|
|
|
|
|
for _ in range(num_blocks):
|
|
|
|
layers = [
|
|
|
|
ResBlock(
|
|
|
|
ch,
|
|
|
|
time_embed_dim,
|
|
|
|
dropout,
|
|
|
|
out_channels=int(mult * model_channels),
|
|
|
|
dims=dims,
|
|
|
|
kernel_size=kernel_size,
|
|
|
|
)
|
|
|
|
]
|
|
|
|
ch = int(mult * model_channels)
|
|
|
|
if ds in attention_resolutions:
|
|
|
|
layers.append(
|
|
|
|
AttentionBlock(
|
|
|
|
ch,
|
|
|
|
num_heads=num_heads,
|
|
|
|
num_head_channels=num_head_channels,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
|
|
|
self._feature_size += ch
|
|
|
|
input_block_chans.append(ch)
|
|
|
|
if level != len(channel_mult) - 1:
|
|
|
|
out_ch = ch
|
|
|
|
self.input_blocks.append(
|
|
|
|
TimestepEmbedSequential(
|
|
|
|
Downsample(
|
|
|
|
ch, conv_resample, dims=dims, out_channels=out_ch, factor=scale_factor, ksize=1, pad=0
|
|
|
|
)
|
|
|
|
)
|
|
|
|
)
|
|
|
|
ch = out_ch
|
|
|
|
input_block_chans.append(ch)
|
|
|
|
ds *= 2
|
|
|
|
self._feature_size += ch
|
|
|
|
|
|
|
|
self.middle_block = TimestepEmbedSequential(
|
|
|
|
ResBlock(
|
|
|
|
ch,
|
|
|
|
time_embed_dim,
|
|
|
|
dropout,
|
|
|
|
dims=dims,
|
|
|
|
kernel_size=kernel_size,
|
|
|
|
),
|
|
|
|
AttentionBlock(
|
|
|
|
ch,
|
|
|
|
num_heads=num_heads,
|
|
|
|
num_head_channels=num_head_channels,
|
|
|
|
),
|
|
|
|
ResBlock(
|
|
|
|
ch,
|
|
|
|
time_embed_dim,
|
|
|
|
dropout,
|
|
|
|
dims=dims,
|
|
|
|
kernel_size=kernel_size,
|
|
|
|
),
|
|
|
|
)
|
|
|
|
self._feature_size += ch
|
|
|
|
|
|
|
|
self.output_blocks = nn.ModuleList([])
|
|
|
|
for level, (mult, num_blocks) in list(enumerate(zip(channel_mult, num_res_blocks)))[::-1]:
|
|
|
|
for i in range(num_blocks + 1):
|
|
|
|
ich = input_block_chans.pop()
|
|
|
|
layers = [
|
|
|
|
ResBlock(
|
|
|
|
ch + ich,
|
|
|
|
time_embed_dim,
|
|
|
|
dropout,
|
|
|
|
out_channels=int(model_channels * mult),
|
|
|
|
dims=dims,
|
|
|
|
kernel_size=kernel_size,
|
|
|
|
)
|
|
|
|
]
|
|
|
|
ch = int(model_channels * mult)
|
|
|
|
if ds in attention_resolutions:
|
|
|
|
layers.append(
|
|
|
|
AttentionBlock(
|
|
|
|
ch,
|
|
|
|
num_heads=num_heads_upsample,
|
|
|
|
num_head_channels=num_head_channels,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
if level and i == num_blocks:
|
|
|
|
out_ch = ch
|
|
|
|
layers.append(
|
|
|
|
Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, factor=scale_factor)
|
|
|
|
)
|
|
|
|
ds //= 2
|
|
|
|
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
|
|
|
self._feature_size += ch
|
|
|
|
|
|
|
|
self.out = nn.Sequential(
|
|
|
|
normalization(ch),
|
|
|
|
nn.SiLU(),
|
|
|
|
zero_module(conv_nd(dims, model_channels, out_channels, kernel_size, padding=padding)),
|
|
|
|
)
|
|
|
|
|
2022-01-25 21:26:21 +00:00
|
|
|
def load_state_dict(self, state_dict: 'OrderedDict[str, Tensor]',
|
|
|
|
strict: bool = True):
|
|
|
|
# Temporary hack to allow the addition of nil-guidance token embeddings to the existing guidance embeddings.
|
|
|
|
lsd = self.state_dict()
|
|
|
|
revised = 0
|
|
|
|
for i, blk in enumerate(self.input_blocks):
|
|
|
|
if isinstance(blk, nn.Embedding):
|
|
|
|
key = f'input_blocks.{i}.weight'
|
|
|
|
if state_dict[key].shape[0] != lsd[key].shape[0]:
|
|
|
|
t = torch.randn_like(lsd[key]) * .02
|
|
|
|
t[:state_dict[key].shape[0]] = state_dict[key]
|
|
|
|
state_dict[key] = t
|
|
|
|
revised += 1
|
|
|
|
print(f"Loaded experimental unet_diffusion_net with {revised} modifications.")
|
|
|
|
return super().load_state_dict(state_dict, strict)
|
|
|
|
|
|
|
|
|
|
|
|
|
2022-01-18 15:38:24 +00:00
|
|
|
def forward(self, x, timesteps, tokens, conditioning_input=None):
|
|
|
|
"""
|
|
|
|
Apply the model to an input batch.
|
|
|
|
|
|
|
|
:param x: an [N x C x ...] Tensor of inputs.
|
|
|
|
:param timesteps: a 1-D batch of timesteps.
|
|
|
|
:param tokens: an aligned text input.
|
|
|
|
:return: an [N x C x ...] Tensor of outputs.
|
|
|
|
"""
|
2022-01-19 07:35:08 +00:00
|
|
|
orig_x_shape = x.shape[-1]
|
2022-01-20 18:27:49 +00:00
|
|
|
cm = ceil_multiple(x.shape[-1], 2048)
|
2022-01-19 07:35:08 +00:00
|
|
|
if cm != 0:
|
|
|
|
pc = (cm-x.shape[-1])/x.shape[-1]
|
|
|
|
x = F.pad(x, (0,cm-x.shape[-1]))
|
|
|
|
tokens = F.pad(tokens, (0,int(pc*tokens.shape[-1])))
|
2022-01-18 15:38:24 +00:00
|
|
|
if self.conditioning_enabled:
|
|
|
|
assert conditioning_input is not None
|
|
|
|
|
|
|
|
hs = []
|
|
|
|
emb1 = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
|
|
|
if self.conditioning_enabled:
|
2022-01-25 21:26:21 +00:00
|
|
|
actual_cond = self.contextual_embedder(conditioning_input)
|
|
|
|
emb = emb1 + actual_cond
|
2022-01-18 15:38:24 +00:00
|
|
|
else:
|
|
|
|
emb = emb1
|
|
|
|
|
2022-01-25 21:26:21 +00:00
|
|
|
# Mask out guidance tokens for un-guided diffusion.
|
2022-01-26 00:57:16 +00:00
|
|
|
if self.training and self.nil_guidance_fwd_proportion > 0:
|
2022-01-25 21:26:21 +00:00
|
|
|
token_mask = torch.rand(tokens.shape, device=tokens.device) < self.nil_guidance_fwd_proportion
|
|
|
|
tokens = torch.where(token_mask, self.mask_token_id, tokens)
|
|
|
|
|
2022-01-18 15:38:24 +00:00
|
|
|
h = x.type(self.dtype)
|
|
|
|
for k, module in enumerate(self.input_blocks):
|
|
|
|
if isinstance(module, nn.Embedding):
|
|
|
|
h_tok = F.interpolate(module(tokens).permute(0,2,1), size=(h.shape[-1]), mode='nearest')
|
|
|
|
h = h + h_tok
|
|
|
|
else:
|
2022-01-22 16:14:50 +00:00
|
|
|
h = module(h, emb)
|
2022-01-18 15:38:24 +00:00
|
|
|
hs.append(h)
|
2022-01-22 16:14:50 +00:00
|
|
|
h = self.middle_block(h, emb)
|
2022-01-18 15:38:24 +00:00
|
|
|
for module in self.output_blocks:
|
|
|
|
h = torch.cat([h, hs.pop()], dim=1)
|
2022-01-22 16:14:50 +00:00
|
|
|
h = module(h, emb)
|
2022-01-18 15:38:24 +00:00
|
|
|
h = h.type(x.dtype)
|
2022-01-19 07:35:08 +00:00
|
|
|
out = self.out(h)
|
|
|
|
return out[:, :, :orig_x_shape]
|
2022-01-18 15:38:24 +00:00
|
|
|
|
|
|
|
def benchmark(self, x, timesteps, tokens, conditioning_input):
|
|
|
|
profile = OrderedDict()
|
|
|
|
params = OrderedDict()
|
|
|
|
hs = []
|
|
|
|
emb1 = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
|
|
|
from torchprofile import profile_macs
|
|
|
|
profile['contextual_embedder'] = profile_macs(self.contextual_embedder, args=(conditioning_input,))
|
|
|
|
params['contextual_embedder'] = sum(p.numel() for p in self.contextual_embedder.parameters())
|
|
|
|
emb2 = self.contextual_embedder(conditioning_input)
|
|
|
|
emb = emb1 + emb2
|
|
|
|
|
|
|
|
h = x.type(self.dtype)
|
|
|
|
for k, module in enumerate(self.input_blocks):
|
|
|
|
if isinstance(module, nn.Embedding):
|
|
|
|
h_tok = F.interpolate(module(tokens).permute(0,2,1), size=(h.shape[-1]), mode='nearest')
|
|
|
|
h = h + h_tok
|
|
|
|
else:
|
|
|
|
profile[f'in_{k}'] = profile_macs(module, args=(h,emb))
|
|
|
|
params[f'in_{k}'] = sum(p.numel() for p in module.parameters())
|
|
|
|
h = module(h, emb)
|
|
|
|
hs.append(h)
|
|
|
|
profile['middle'] = profile_macs(self.middle_block, args=(h,emb))
|
|
|
|
params['middle'] = sum(p.numel() for p in self.middle_block.parameters())
|
|
|
|
h = self.middle_block(h, emb)
|
|
|
|
for k, module in enumerate(self.output_blocks):
|
|
|
|
h = torch.cat([h, hs.pop()], dim=1)
|
|
|
|
profile[f'out_{k}'] = profile_macs(module, args=(h,emb))
|
|
|
|
params[f'out_{k}'] = sum(p.numel() for p in module.parameters())
|
|
|
|
h = module(h, emb)
|
|
|
|
h = h.type(x.dtype)
|
|
|
|
profile['out'] = profile_macs(self.out, args=(h,))
|
|
|
|
params['out'] = sum(p.numel() for p in self.out.parameters())
|
|
|
|
return profile, params
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def register_diffusion_tts_experimental(opt_net, opt):
|
|
|
|
return DiffusionTts(**opt_net['kwargs'])
|
|
|
|
|
|
|
|
|
|
|
|
# Test for ~4 second audio clip at 22050Hz
|
|
|
|
if __name__ == '__main__':
|
2022-01-25 21:26:21 +00:00
|
|
|
clip = torch.randn(4, 1, 86016)
|
|
|
|
tok = torch.randint(0,30, (4,388))
|
|
|
|
cond = torch.randn(4, 1, 44000)
|
|
|
|
ts = torch.LongTensor([555, 556, 600, 600])
|
2022-01-18 15:38:24 +00:00
|
|
|
model = DiffusionTts(64, channel_mult=[1,1.5,2, 3, 4, 6, 8, 8, 8, 8], num_res_blocks=[2, 2, 2, 2, 2, 2, 2, 4, 4, 4],
|
|
|
|
token_conditioning_resolutions=[1,4,16,64], attention_resolutions=[256,512], num_heads=4, kernel_size=3,
|
|
|
|
scale_factor=2, conditioning_inputs_provided=True, time_embed_dim_multiplier=4)
|
2022-01-25 21:26:21 +00:00
|
|
|
model(clip, ts, tok, cond)
|
|
|
|
|
2022-01-18 15:38:24 +00:00
|
|
|
p, r = model.benchmark(clip, ts, tok, cond)
|
|
|
|
p = {k: v / 1000000000 for k, v in p.items()}
|
|
|
|
p = sorted(p.items(), key=operator.itemgetter(1))
|
|
|
|
print("Computational complexity:")
|
|
|
|
print(p)
|
|
|
|
print(sum([j[1] for j in p]))
|
|
|
|
print()
|
|
|
|
print("Memory complexity:")
|
|
|
|
r = {k: v / 1000000 for k, v in r.items()}
|
|
|
|
r = sorted(r.items(), key=operator.itemgetter(1))
|
|
|
|
print(r)
|
|
|
|
print(sum([j[1] for j in r]))
|
|
|
|
|