forked from mrq/DL-Art-School
iq2
This commit is contained in:
parent
7a10c3fed8
commit
1b648abd7c
|
@ -5,6 +5,7 @@ import torch.nn as nn
|
|||
import torch.nn.functional as F
|
||||
|
||||
from models.diffusion.nn import timestep_embedding
|
||||
from models.lucidrains.vq import VectorQuantize
|
||||
from models.lucidrains.x_transformers import FeedForward, Attention, Decoder, RMSScaleShiftNorm
|
||||
from trainer.networks import register_model
|
||||
from utils.util import checkpoint
|
||||
|
@ -16,55 +17,36 @@ class SelfClassifyingHead(nn.Module):
|
|||
self.seq_len = seq_len
|
||||
self.num_classes = classes
|
||||
self.temperature = init_temperature
|
||||
self.dec = Decoder(dim=dim, depth=head_depth, heads=2, ff_dropout=dropout, ff_mult=2, attn_dropout=dropout,
|
||||
use_rmsnorm=True, ff_glu=True, rotary_pos_emb=True)
|
||||
self.to_classes = nn.Linear(dim, classes)
|
||||
self.feedback_codebooks = nn.Linear(classes, dim, bias=False)
|
||||
self.codebooks = nn.Linear(classes, out_dim, bias=False)
|
||||
|
||||
@staticmethod
|
||||
def _compute_perplexity(probs, mask=None):
|
||||
if mask is not None:
|
||||
mask_extended = mask.flatten()[:, None, None].expand(probs.shape)
|
||||
probs = torch.where(mask_extended, probs, torch.zeros_like(probs))
|
||||
marginal_probs = probs.sum(dim=0) / mask.sum()
|
||||
else:
|
||||
marginal_probs = probs.mean(dim=0)
|
||||
|
||||
perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum()
|
||||
return perplexity
|
||||
self.dec = Decoder(dim=dim, depth=head_depth, heads=4, ff_dropout=dropout, ff_mult=2, attn_dropout=dropout,
|
||||
use_rmsnorm=True, ff_glu=True, do_checkpointing=False)
|
||||
self.quantizer = VectorQuantize(dim, classes, codebook_dim=32, use_cosine_sim=True, threshold_ema_dead_code=2,
|
||||
sample_codebook_temp=init_temperature)
|
||||
self.to_output = nn.Linear(dim, out_dim)
|
||||
|
||||
def do_ar_step(self, x, used_codes):
|
||||
h = self.dec(x)
|
||||
h = self.to_classes(h[:,-1])
|
||||
for uc in used_codes:
|
||||
mask = torch.arange(0, self.num_classes, device=x.device).unsqueeze(0).repeat(x.shape[0],1) == uc.unsqueeze(1)
|
||||
h[mask] = -torch.inf
|
||||
c = F.gumbel_softmax(h, tau=self.temperature, hard=self.temperature==1)\
|
||||
|
||||
soft_c = torch.softmax(h, dim=-1)
|
||||
perplexity = self._compute_perplexity(soft_c)
|
||||
return c, perplexity
|
||||
h, c, _ = self.quantizer(h[:, -1], used_codes)
|
||||
return h, c
|
||||
|
||||
def forward(self, x):
|
||||
with torch.no_grad():
|
||||
# Force one of the codebook weights to zero, allowing the model to "skip" any classes it chooses.
|
||||
self.codebooks.weight.data[:, 0] = 0
|
||||
self.quantizer._codebook.embed.data[0] = 0
|
||||
|
||||
# manually perform ar regression over sequence_length=self.seq_len
|
||||
stack = [x]
|
||||
outputs = []
|
||||
results = []
|
||||
codes = []
|
||||
total_perplexity = 0
|
||||
for i in range(self.seq_len):
|
||||
nc, perp = checkpoint(functools.partial(self.do_ar_step, used_codes=codes), torch.stack(stack, dim=1))
|
||||
codes.append(nc.argmax(-1))
|
||||
stack.append(self.feedback_codebooks(nc))
|
||||
outputs.append(self.codebooks(nc))
|
||||
h, c = checkpoint(functools.partial(self.do_ar_step, used_codes=codes), torch.stack(stack, dim=1))
|
||||
c_mask = c
|
||||
c_mask[c==0] = -1 # Mask this out because we want code=0 to be capable of being repeated.
|
||||
codes.append(c)
|
||||
stack.append(h.detach()) # Detach here to avoid piling up gradients from autoregression. We really just want the gradients to flow to the selected class embeddings and the selector for those classes.
|
||||
outputs.append(self.to_output(h))
|
||||
results.append(torch.stack(outputs, dim=1).sum(1))
|
||||
total_perplexity = total_perplexity + perp
|
||||
return results, total_perplexity / self.seq_len, torch.cat(codes, dim=-1)
|
||||
return results, torch.cat(codes, dim=0)
|
||||
|
||||
|
||||
class VectorResBlock(nn.Module):
|
||||
|
@ -83,7 +65,6 @@ class InstrumentQuantizer(nn.Module):
|
|||
def __init__(self, op_dim, dim, num_classes, enc_depth, head_depth, class_seq_len=5, dropout=.1,
|
||||
min_temp=1, max_temp=10, temp_decay=.999):
|
||||
"""
|
||||
|
||||
Args:
|
||||
op_dim:
|
||||
dim:
|
||||
|
@ -100,6 +81,7 @@ class InstrumentQuantizer(nn.Module):
|
|||
self.op_dim = op_dim
|
||||
self.proj = nn.Linear(op_dim, dim)
|
||||
self.encoder = nn.ModuleList([VectorResBlock(dim, dropout) for _ in range(enc_depth)])
|
||||
self.final_bn = nn.BatchNorm1d(dim)
|
||||
self.heads = SelfClassifyingHead(dim, num_classes, op_dim, head_depth, class_seq_len, dropout, max_temp)
|
||||
self.min_gumbel_temperature = min_temp
|
||||
self.max_gumbel_temperature = max_temp
|
||||
|
@ -117,14 +99,15 @@ class InstrumentQuantizer(nn.Module):
|
|||
h = self.proj(f)
|
||||
for lyr in self.encoder:
|
||||
h = lyr(h)
|
||||
h = self.final_bn(h.unsqueeze(-1)).squeeze(-1)
|
||||
|
||||
reconstructions, perplexity, codes = self.heads(h)
|
||||
reconstructions, codes = self.heads(h)
|
||||
reconstruction_losses = torch.stack([F.mse_loss(r.reshape(b, s, c), px) for r in reconstructions])
|
||||
r_follow = torch.arange(1, reconstruction_losses.shape[0]+1, device=x.device)
|
||||
reconstruction_losses = (reconstruction_losses * r_follow / r_follow.shape[0])
|
||||
self.log_codes(codes)
|
||||
|
||||
return reconstruction_losses, perplexity
|
||||
return reconstruction_losses
|
||||
|
||||
def log_codes(self, codes):
|
||||
if self.internal_step % 5 == 0:
|
||||
|
@ -139,13 +122,13 @@ class InstrumentQuantizer(nn.Module):
|
|||
def get_debug_values(self, step, __):
|
||||
if self.total_codes > 0:
|
||||
return {'histogram_codes': self.codes[:self.total_codes],
|
||||
'temperature': self.heads.temperature}
|
||||
'temperature': self.heads.quantizer._codebook.sample_codebook_temp}
|
||||
else:
|
||||
return {}
|
||||
|
||||
def update_for_step(self, step, *args):
|
||||
self.internal_step = step
|
||||
self.heads.temperature = max(
|
||||
self.heads.quantizer._codebook.sample_codebook_temp = max(
|
||||
self.max_gumbel_temperature * self.gumbel_temperature_decay**step,
|
||||
self.min_gumbel_temperature,
|
||||
)
|
||||
|
|
Loading…
Reference in New Issue
Block a user