forked from mrq/DL-Art-School
Finish up the text->voice clip model
This commit is contained in:
parent
65ffe38fce
commit
68090ac3e9
|
@ -32,14 +32,16 @@ class VoiceCLIP(nn.Module):
|
||||||
dim_text=512,
|
dim_text=512,
|
||||||
dim_speech=512,
|
dim_speech=512,
|
||||||
dim_latent=512,
|
dim_latent=512,
|
||||||
num_text_tokens=10000,
|
num_text_tokens=256,
|
||||||
text_enc_depth=6,
|
text_enc_depth=6,
|
||||||
text_seq_len=200,
|
text_seq_len=120,
|
||||||
text_heads=8,
|
text_heads=8,
|
||||||
num_speech_tokens=8192,
|
num_speech_tokens=8192,
|
||||||
speech_enc_depth=6,
|
speech_enc_depth=6,
|
||||||
speech_heads=8,
|
speech_heads=8,
|
||||||
speech_seq_len=250,
|
speech_seq_len=250,
|
||||||
|
text_mask_percentage: 0,
|
||||||
|
wav_token_compression = 1024,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.text_emb = nn.Embedding(num_text_tokens, dim_text)
|
self.text_emb = nn.Embedding(num_text_tokens, dim_text)
|
||||||
|
@ -55,15 +57,27 @@ class VoiceCLIP(nn.Module):
|
||||||
self.to_speech_latent = nn.Linear(dim_speech, dim_latent, bias=False)
|
self.to_speech_latent = nn.Linear(dim_speech, dim_latent, bias=False)
|
||||||
|
|
||||||
self.temperature = nn.Parameter(torch.tensor(1.))
|
self.temperature = nn.Parameter(torch.tensor(1.))
|
||||||
|
self.text_mask_percentage = text_mask_percentage
|
||||||
|
self.wav_token_compression = wav_token_compression
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
text,
|
text,
|
||||||
|
text_lengths,
|
||||||
speech_tokens,
|
speech_tokens,
|
||||||
text_mask=None,
|
wav_lengths,
|
||||||
return_loss=False
|
return_loss=False
|
||||||
):
|
):
|
||||||
|
# This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
|
||||||
|
# chopping the inputs by the maximum actual length.
|
||||||
|
max_text_len = text_lengths.max()
|
||||||
|
text = text[:, :max_text_len]
|
||||||
|
max_mel_len = wav_lengths.max() // self.wav_token_compression
|
||||||
|
speech_tokens = speech_tokens[:, :max_mel_len]
|
||||||
|
|
||||||
b, device = text.shape[0], text.device
|
b, device = text.shape[0], text.device
|
||||||
|
if self.text_mask_percentage > 0:
|
||||||
|
text_mask = torch.rand_like(text.float()) > self.text_mask_percentage
|
||||||
|
|
||||||
text_emb = self.text_emb(text)
|
text_emb = self.text_emb(text)
|
||||||
text_emb += self.text_pos_emb(torch.arange(text.shape[1], device=device))
|
text_emb += self.text_pos_emb(torch.arange(text.shape[1], device=device))
|
||||||
|
@ -74,7 +88,7 @@ class VoiceCLIP(nn.Module):
|
||||||
enc_text = self.text_transformer(text_emb, mask=text_mask)
|
enc_text = self.text_transformer(text_emb, mask=text_mask)
|
||||||
enc_speech = self.speech_transformer(speech_emb)
|
enc_speech = self.speech_transformer(speech_emb)
|
||||||
|
|
||||||
if exists(text_mask):
|
if self.text_mask_percentage > 0:
|
||||||
text_latents = masked_mean(enc_text, text_mask, dim=1)
|
text_latents = masked_mean(enc_text, text_mask, dim=1)
|
||||||
else:
|
else:
|
||||||
text_latents = enc_text.mean(dim=1)
|
text_latents = enc_text.mean(dim=1)
|
||||||
|
@ -104,7 +118,7 @@ def register_voice_clip(opt_net, opt):
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
clip = VoiceCLIP()
|
clip = VoiceCLIP(text_mask_percentage=.2)
|
||||||
clip(torch.randint(0,1000,(2,200)),
|
clip(torch.randint(0,256,(2,120)),
|
||||||
torch.randint(0,8192,(2,250)),
|
torch.randint(0,8192,(2,250)),
|
||||||
return_loss=True)
|
return_loss=True)
|
Loading…
Reference in New Issue
Block a user