forked from mrq/DL-Art-School
Restore causal decoding
This commit is contained in:
parent
5138d61767
commit
99adc846c7
|
@ -253,7 +253,8 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
||||||
cheater_codes = self.kmeans_inj({'in': cheater})['out']
|
cheater_codes = self.kmeans_inj({'in': cheater})['out']
|
||||||
ar_latent = self.local_modules['ar_prior'].to(audio.device)(cheater_codes, cheater, return_latent=True)
|
ar_latent = self.local_modules['ar_prior'].to(audio.device)(cheater_codes, cheater, return_latent=True)
|
||||||
|
|
||||||
gen_mel = self.diffuser.ddim_sample_loop(self.model, mel_norm.shape, model_kwargs={'codes': ar_latent}, progress=True)
|
gen_mel = self.diffuser.ddim_sample_loop(self.model, mel_norm.shape, model_kwargs={'codes': ar_latent},
|
||||||
|
causal=self.causal, causal_slope=self.causal_slope, progress=True)
|
||||||
|
|
||||||
gen_mel_denorm = denormalize_mel(gen_mel)
|
gen_mel_denorm = denormalize_mel(gen_mel)
|
||||||
output_shape = (1,16,audio.shape[-1]//16)
|
output_shape = (1,16,audio.shape[-1]//16)
|
||||||
|
@ -419,18 +420,18 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_cheater_gen_v5\\train.yml', 'generator',
|
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_cheater_gen.yml', 'generator',
|
||||||
also_load_savepoint=False,
|
also_load_savepoint=False,
|
||||||
load_path='X:\\dlas\\experiments\\train_music_cheater_gen_v5\\models\\206000_generator_ema.pth'
|
load_path='X:\\dlas\\experiments\\train_music_cheater_gen_v5_causal_retrain\\models\\12000_generator.pth'
|
||||||
).cuda()
|
).cuda()
|
||||||
opt_eval = {'path': 'Y:\\split\\yt-music-eval', # eval music, mostly electronica. :)
|
opt_eval = {'path': 'Y:\\split\\yt-music-eval', # eval music, mostly electronica. :)
|
||||||
#'path': 'E:\\music_eval', # this is music from the training dataset, including a lot more variety.
|
#'path': 'E:\\music_eval', # this is music from the training dataset, including a lot more variety.
|
||||||
'diffusion_steps': 64,
|
'diffusion_steps': 64,
|
||||||
'conditioning_free': True, 'conditioning_free_k': 1, 'use_ddim': True, 'clip_audio': False,
|
'conditioning_free': True, 'conditioning_free_k': 1, 'use_ddim': True, 'clip_audio': False,
|
||||||
'diffusion_schedule': 'linear', 'diffusion_type': 'cheater_gen',
|
'diffusion_schedule': 'linear', 'diffusion_type': 'cheater_gen',
|
||||||
#'causal': True, 'causal_slope': 4,
|
'causal': True, 'causal_slope': 4,
|
||||||
#'partial_low': 128, 'partial_high': 192
|
#'partial_low': 128, 'partial_high': 192
|
||||||
}
|
}
|
||||||
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 235, 'device': 'cuda', 'opt': {}}
|
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 236, 'device': 'cuda', 'opt': {}}
|
||||||
eval = MusicDiffusionFid(diffusion, opt_eval, env)
|
eval = MusicDiffusionFid(diffusion, opt_eval, env)
|
||||||
print(eval.perform_eval())
|
print(eval.perform_eval())
|
||||||
|
|
Loading…
Reference in New Issue
Block a user