unified_voice2: decouple positional embeddings and token embeddings from underlying gpt model

This commit is contained in:
James Betker 2022-01-10 08:14:41 -07:00
parent f503d8d96b
commit ee3dfac2ae
2 changed files with 52 additions and 33 deletions

View File

@ -7,13 +7,23 @@ Every function contains the following arguments:
layers: Net number of layers in the transformer.
model_dim: Hidden dimensionality of the model.
heads: Number of attention heads.
num_tokens: Number of possible tokens in the transformer's dictionary. Do not use this in future releases.
max_seq_len: Maximum sequence length to attend to.
max_mel_seq_len: Maximum mel sequence length to attend to.
max_text_seq_len: Maximum text sequence length to attend to.
checkpointing: Whether or not the underlying implementation should support gradient checkpointing.
Returns:
(model, global_mel_pos_embedding, global_text_pos_embedding, local_mel_pos_embedding, local_text_pos_embedding)
model: The transformer model
global_mel_pos_embedding: A global embedding function (that takes the MEL sequence as input) which should be added on to the MEL embeddings.
global_text_pos_embedding: The global embedding function for text tokens.
local_mel_pos_embedding: A local embedding function which, if not None, should be concatenated with the local text position embeddings and fed to the transformer.
local_text_pos_embedding: The local embedding function for text positions which will be None if local_mel_pos_embedding=None.
"""
import functools
from time import time
import torch
import torch.nn as nn
from tqdm import tqdm
@ -21,46 +31,58 @@ def null_position_embeddings(range, dim):
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)
def build_hf_gpt_transformer(layers, model_dim, heads, num_tokens, max_seq_len, checkpointing):
class LearnedPositionEmbeddings(nn.Module):
def __init__(self, seq_len, model_dim, init=.02):
super().__init__()
self.emb = nn.Embedding(seq_len, model_dim)
# Initializing this way is standard for GPT-2
self.emb.weight.data.normal_(mean=0.0, std=init)
def forward(self, x):
sl = x.shape[1]
return self.emb(torch.arange(0, sl, device=x.device))
def build_hf_gpt_transformer(layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, checkpointing):
"""
GPT-2 implemented by the HuggingFace library.
"""
from transformers import GPT2Config, GPT2Model
gpt_config = GPT2Config(vocab_size=num_tokens,
n_positions=max_seq_len,
n_ctx=max_seq_len,
n_embd=model_dim,
n_layer=layers,
n_head=heads,
gradient_checkpointing=checkpointing,
use_cache=not checkpointing)
gpt_config = GPT2Config(vocab_size=256, # Unused.
n_positions=max_mel_seq_len+max_text_seq_len,
n_ctx=max_mel_seq_len+max_text_seq_len,
n_embd=model_dim,
n_layer=layers,
n_head=heads,
gradient_checkpointing=checkpointing,
use_cache=not checkpointing)
gpt = GPT2Model(gpt_config)
# Override the built in positional embeddings
del gpt.wpe
gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim)
# Built-in token embeddings are unused.
del gpt.wte
return gpt
return gpt, LearnedPositionEmbeddings(max_mel_seq_len, model_dim), LearnedPositionEmbeddings(max_text_seq_len, model_dim),\
None, None
def build_lr_performer(layers, model_dim, heads, num_tokens, max_seq_len, checkpointing):
def build_lr_performer(layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, checkpointing):
"""
lucidrains Performer implementation, https://github.com/lucidrains/performer-pytorch
"""
from models.lucidrains.performer.performer_pytorch import PerformerLM
model = PerformerLM(dim=model_dim, depth=layers, heads=heads, dim_head=model_dim, causal=True,
num_tokens=num_tokens, max_seq_len=max_seq_len)
from models.lucidrains.performer.performer_pytorch import Performer
model = Performer(dim=model_dim, depth=layers, heads=heads, dim_head=model_dim, causal=True)
return model
def build_lr_reformer(layers, model_dim, heads, num_tokens, max_seq_len, checkpointing):
def build_lr_reformer(layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, checkpointing):
"""
lucidrains Reformer implementation, https://github.com/lucidrains/reformer-pytorch
"""
pass
def build_lr_xformer(layers, model_dim, heads, num_tokens, max_seq_len, checkpointing):
def build_lr_xformer(layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, checkpointing):
"""
lucidrains x-transformer implementation, https://github.com/lucidrains/x-transformers
"""

View File

@ -105,14 +105,12 @@ class UnifiedVoice(nn.Module):
self.mel_length_compression = mel_length_compression
self.conditioning_encoder = ConditioningEncoder(80, model_dim, num_attn_heads=heads)
self.text_embedding = nn.Embedding(self.number_text_tokens, model_dim)
self.text_pos_embedding = nn.Embedding(self.max_text_tokens + 2, model_dim)
if use_mel_codes_as_input:
self.mel_embedding = nn.Embedding(self.number_mel_codes, model_dim)
else:
self.mel_embedding = MelEncoder(model_dim, resblocks_per_reduction=1)
self.mel_pos_embedding = nn.Embedding(self.max_mel_tokens + 2, model_dim)
self.seq_length = 4+max_text_tokens+self.max_mel_tokens+self.max_conditioning_inputs
self.gpt = build_hf_gpt_transformer(layers, model_dim, heads, number_mel_codes, self.seq_length, checkpointing)
self.gpt, self.mel_pos_embedding, self.text_pos_embedding, self.mel_layer_pos_embedding, self.text_layer_pos_embedding = \
build_hf_gpt_transformer(layers, model_dim, heads, self.max_text_tokens+2, self.max_mel_tokens+3, checkpointing)
if train_solo_embeddings:
self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True)
self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True)
@ -126,13 +124,11 @@ class UnifiedVoice(nn.Module):
self.max_conditioning_length = max_conditioning_length
# Initialize the embeddings per the GPT-2 scheme
embeddings = [self.text_embedding, self.text_pos_embedding, self.mel_pos_embedding]
embeddings = [self.text_embedding]
if use_mel_codes_as_input:
embeddings.append(self.mel_embedding)
for module in:
for module in embeddings:
module.weight.data.normal_(mean=0.0, std=.02)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def build_aligned_inputs_and_targets(self, input, start_token, stop_token):
inp = F.pad(input, (1,0), value=start_token)
@ -218,14 +214,14 @@ class UnifiedVoice(nn.Module):
speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input).unsqueeze(1)
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device))
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
mel_codes, mel_targets = self.build_aligned_inputs_and_targets(mel_codes, self.start_mel_token, self.stop_mel_token)
if raw_mels is not None:
mel_inp = F.pad(raw_mels, (0, 8))
else:
mel_inp = mel_codes
mel_emb = self.mel_embedding(mel_inp)
mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device))
mel_emb = mel_emb + self.mel_pos_embedding(mel_codes)
if text_first:
text_logits, mel_logits = self.get_logits(speech_conditioning_input, text_emb, self.text_head, mel_emb, self.mel_head, get_attns=return_attentions)
else:
@ -254,7 +250,7 @@ class UnifiedVoice(nn.Module):
speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input).unsqueeze(1)
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device)) + self.text_solo_embedding
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) + self.text_solo_embedding
text_logits = self.get_logits(speech_conditioning_input, text_emb, self.text_head)
loss_text = F.cross_entropy(text_logits, text_targets.long())
return loss_text.mean()
@ -283,7 +279,7 @@ class UnifiedVoice(nn.Module):
else:
mel_inp = mel_codes
mel_emb = self.mel_embedding(mel_inp)
mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device)) + self.mel_solo_embedding
mel_emb = mel_emb + self.mel_pos_embedding(mel_codes) + self.mel_solo_embedding
mel_logits = self.get_logits(speech_conditioning_input, mel_emb, self.mel_head)
loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
return loss_mel.mean()
@ -291,9 +287,10 @@ class UnifiedVoice(nn.Module):
def inference_speech(self, speech_conditioning_input, text_inputs, **hf_generate_kwargs):
if not hasattr(self, 'inference_model'):
# TODO: Decouple gpt_config from this inference model.
seq_length = self.max_mel_tokens + self.max_text_tokens + 5
gpt_config = GPT2Config(vocab_size=self.max_mel_tokens,
n_positions=self.seq_length,
n_ctx=self.seq_length,
n_positions=seq_length,
n_ctx=seq_length,
n_embd=self.model_dim,
n_layer=self.layers,
n_head=self.heads,
@ -303,7 +300,7 @@ class UnifiedVoice(nn.Module):
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(torch.arange(text_inputs.shape[1], device=text_inputs.device))
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
if self.shuffle_conditioning:
# Randomly permute the conditioning spectrogram, to destroy any structure present.