Commit Graph

27 Commits

Author SHA1 Message Date
James Betker
6833048bf7 Alterations to diffusion_dvae so it can be used directly on spectrograms 2021-09-23 15:56:25 -06:00
James Betker
5c8d266d4f chk 2021-09-17 09:15:36 -06:00
James Betker
a6544f1684 More checkpointing fixes 2021-09-16 23:12:43 -06:00
James Betker
94899d88f3 Fix overuse of checkpointing 2021-09-16 23:00:28 -06:00
James Betker
f78ce9d924 Get diffusion_dvae ready for prime time! 2021-09-16 22:43:10 -06:00
James Betker
6f48674647 Support diffusion models with extra return values & inference in diffusion_dvae 2021-09-16 10:53:46 -06:00
James Betker
0382660159 Get diffusion_dvae functional 2021-09-14 17:43:31 -06:00
James Betker
73b930c0f6 Add diffusion_dvae
Increase split_on_silence interval
2021-09-09 16:22:05 -06:00
James Betker
b8f2e0f452 mydvae 2021-09-06 17:45:30 -06:00
James Betker
3e073cff85 Set kernel_size in diffusion_vocoder 2021-09-01 08:33:46 -06:00
James Betker
dabd87246d Add unet_diffusion_vocoder 2021-08-31 14:38:33 -06:00
James Betker
398185e109 More work on wave-diffusion 2021-07-27 05:36:17 -06:00
James Betker
96e90e7047 Add support for a gaussian-diffusion-based wave tacotron 2021-07-26 16:27:31 -06:00
James Betker
afa41f1804 Allow hq color jittering and corruptions that are not included in the corruption factor 2021-06-30 09:44:46 -06:00
James Betker
6fd16ea9c8 Add meta-anomaly detection, colorjitter augmentation 2021-06-29 13:41:55 -06:00
James Betker
46e9f62be0 Add unet with latent guide
This is a diffusion network that uses both a LQ image
and a reference sample HQ image that is compressed into
a latent vector to perform upsampling

The hope is that we can steer the upsampling network
with sample images.
2021-06-26 11:02:58 -06:00
James Betker
0ded106562 Merge remote-tracking branch 'origin/master' 2021-06-25 13:16:28 -06:00
James Betker
a0ef07ddb8
Create unet_latent_guide.py 2021-06-25 11:25:14 -06:00
James Betker
e7890dc0ba Misc fixes for diffusion nets 2021-06-21 10:38:07 -06:00
James Betker
6c6e82406e Pass a corruption factor through the dataset into the upsampling network
The intuition is this will help guide the network to make better informed decisions
about how it performs upsampling based on how it perceives the underlying content.

(I'm giving up on letting networks detect their own quality - I'm not convinced it is
actually feasible)
2021-06-07 09:13:54 -06:00
James Betker
692e9c417b Support diffusion unet 2021-06-06 13:57:22 -06:00
James Betker
75567a9814 Only head norm removed 2021-06-05 23:29:11 -06:00
James Betker
65d0376b90 Re-add normalization at the tail of the RRDB 2021-06-05 23:04:05 -06:00
James Betker
184e887122 Remove rrdb normalization 2021-06-05 21:39:19 -06:00
James Betker
80d4404367 A few fixes:
- Output better prediction of xstart from eps
- Support LossAwareSampler
- Support AdamW
2021-06-05 13:40:32 -06:00
James Betker
bf811f80c1 GD mods & fixes
- Report variational loss separately
- Report model prediction from injector
- Log these things
- Use respacing like guided diffusion
2021-06-04 17:13:16 -06:00
James Betker
6084915af8 Support gaussian diffusion models
Adds support for GD models, courtesy of some maths from openai.

Also:
- Fixes requirement for eval{} even when it isn't being used
- Adds support for denormalizing an imagenet norm
2021-06-02 21:47:32 -06:00