forked from mrq/DL-Art-School
445 lines
15 KiB
Python
445 lines
15 KiB
Python
import functools
|
|
|
|
import torch
|
|
from torch import nn, einsum
|
|
import torch.nn.functional as F
|
|
import torch.distributed as distributed
|
|
from torch.cuda.amp import autocast
|
|
|
|
from einops import rearrange, repeat
|
|
from contextlib import contextmanager
|
|
|
|
|
|
def par(t, nm):
|
|
print(f'grad report {nm}: {t}')
|
|
return t
|
|
|
|
def reg(t, nm):
|
|
l = torch.tensor([0], requires_grad=True, device=t.device, dtype=torch.float)
|
|
l.register_hook(functools.partial(par, nm=nm))
|
|
t = t + l
|
|
return t
|
|
|
|
def exists(val):
|
|
return val is not None
|
|
|
|
def default(val, d):
|
|
return val if exists(val) else d
|
|
|
|
def noop(*args, **kwargs):
|
|
pass
|
|
|
|
def l2norm(t):
|
|
return F.normalize(t, p = 2, dim = -1)
|
|
|
|
def log(t, eps = 1e-20):
|
|
return torch.log(t.clamp(min = eps))
|
|
|
|
def gumbel_noise(t):
|
|
noise = torch.zeros_like(t).uniform_(0, 1)
|
|
return -log(-log(noise))
|
|
|
|
def gumbel_sample(t, temperature = 1., dim = -1):
|
|
if temperature == 0:
|
|
return t.argmax(dim = dim)
|
|
|
|
return ((t / temperature) + gumbel_noise(t)).argmax(dim = dim)
|
|
|
|
def ema_inplace(moving_avg, new, decay):
|
|
moving_avg.data.mul_(decay).add_(new, alpha = (1 - decay))
|
|
|
|
def laplace_smoothing(x, n_categories, eps = 1e-5):
|
|
return (x + eps) / (x.sum() + n_categories * eps)
|
|
|
|
def sample_vectors(samples, num):
|
|
num_samples, device = samples.shape[0], samples.device
|
|
|
|
if num_samples >= num:
|
|
indices = torch.randperm(num_samples, device = device)[:num]
|
|
else:
|
|
indices = torch.randint(0, num_samples, (num,), device = device)
|
|
|
|
return samples[indices]
|
|
|
|
def kmeans(samples, num_clusters, num_iters = 10, use_cosine_sim = False):
|
|
dim, dtype, device = samples.shape[-1], samples.dtype, samples.device
|
|
|
|
means = sample_vectors(samples, num_clusters)
|
|
|
|
for _ in range(num_iters):
|
|
if use_cosine_sim:
|
|
dists = samples @ means.t()
|
|
else:
|
|
diffs = rearrange(samples, 'n d -> n () d') \
|
|
- rearrange(means, 'c d -> () c d')
|
|
dists = -(diffs ** 2).sum(dim = -1)
|
|
|
|
buckets = dists.max(dim = -1).indices
|
|
bins = torch.bincount(buckets, minlength = num_clusters)
|
|
zero_mask = bins == 0
|
|
bins_min_clamped = bins.masked_fill(zero_mask, 1)
|
|
|
|
new_means = buckets.new_zeros(num_clusters, dim, dtype = dtype)
|
|
new_means.scatter_add_(0, repeat(buckets, 'n -> n d', d = dim), samples)
|
|
new_means = new_means / bins_min_clamped[..., None]
|
|
|
|
if use_cosine_sim:
|
|
new_means = l2norm(new_means)
|
|
|
|
means = torch.where(zero_mask[..., None], means, new_means)
|
|
|
|
return means, bins
|
|
|
|
# regularization losses
|
|
|
|
def orthgonal_loss_fn(t):
|
|
# eq (2) from https://arxiv.org/abs/2112.00384
|
|
n = t.shape[0]
|
|
normed_codes = l2norm(t)
|
|
identity = torch.eye(n, device = t.device)
|
|
cosine_sim = einsum('i d, j d -> i j', normed_codes, normed_codes)
|
|
return ((cosine_sim - identity) ** 2).sum() / (n ** 2)
|
|
|
|
# distance types
|
|
|
|
class EuclideanCodebook(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
codebook_size,
|
|
kmeans_init = False,
|
|
kmeans_iters = 10,
|
|
decay = 0.8,
|
|
eps = 1e-5,
|
|
threshold_ema_dead_code = 2,
|
|
use_ddp = False,
|
|
learnable_codebook = False,
|
|
sample_codebook_temp = 0
|
|
):
|
|
super().__init__()
|
|
self.decay = decay
|
|
init_fn = torch.randn if not kmeans_init else torch.zeros
|
|
embed = init_fn(codebook_size, dim)
|
|
|
|
self.codebook_size = codebook_size
|
|
self.kmeans_iters = kmeans_iters
|
|
self.eps = eps
|
|
self.threshold_ema_dead_code = threshold_ema_dead_code
|
|
self.sample_codebook_temp = sample_codebook_temp
|
|
|
|
self.all_reduce_fn = distributed.all_reduce if use_ddp else noop
|
|
|
|
self.register_buffer('initted', torch.Tensor([not kmeans_init]))
|
|
self.register_buffer('cluster_size', torch.zeros(codebook_size))
|
|
self.register_buffer('embed_avg', embed.clone())
|
|
|
|
self.learnable_codebook = learnable_codebook
|
|
if learnable_codebook:
|
|
self.embed = nn.Parameter(embed)
|
|
else:
|
|
self.register_buffer('embed', embed)
|
|
|
|
@torch.jit.ignore
|
|
def init_embed_(self, data):
|
|
if self.initted:
|
|
return
|
|
|
|
embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters)
|
|
self.embed.data.copy_(embed)
|
|
self.embed_avg.data.copy_(embed.clone())
|
|
self.cluster_size.data.copy_(cluster_size)
|
|
self.initted.data.copy_(torch.Tensor([True]))
|
|
|
|
def replace(self, samples, mask):
|
|
modified_codebook = torch.where(
|
|
mask[..., None],
|
|
sample_vectors(samples, self.codebook_size),
|
|
self.embed
|
|
)
|
|
self.embed.data.copy_(modified_codebook)
|
|
|
|
def expire_codes_(self, batch_samples):
|
|
if self.threshold_ema_dead_code == 0:
|
|
return
|
|
|
|
expired_codes = self.cluster_size < self.threshold_ema_dead_code
|
|
if not torch.any(expired_codes):
|
|
return
|
|
batch_samples = rearrange(batch_samples, '... d -> (...) d')
|
|
self.replace(batch_samples, mask = expired_codes)
|
|
|
|
@autocast(enabled = False)
|
|
def forward(self, x, used_codes=[]):
|
|
shape, dtype = x.shape, x.dtype
|
|
flatten = rearrange(x, '... d -> (...) d')
|
|
|
|
self.init_embed_(flatten)
|
|
|
|
embed = self.embed if not self.learnable_codebook else self.embed.detach()
|
|
embed = embed.t()
|
|
|
|
dist = -(
|
|
flatten.pow(2).sum(1, keepdim=True)
|
|
- 2 * flatten @ embed
|
|
+ embed.pow(2).sum(0, keepdim=True)
|
|
)
|
|
|
|
for uc in used_codes:
|
|
mask = torch.arange(0, self.codebook_size, device=x.device).unsqueeze(0).repeat(x.shape[0],1) == uc.unsqueeze(1)
|
|
dist[mask] = -torch.inf
|
|
embed_ind = gumbel_sample(dist, dim = -1, temperature = self.sample_codebook_temp)
|
|
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
|
|
embed_ind = embed_ind.view(*shape[:-1])
|
|
quantize = F.embedding(embed_ind, self.embed)
|
|
|
|
# Perform the gumbel trick on the end result (during training)
|
|
if self.training:
|
|
quantize = flatten + (quantize - flatten).detach()
|
|
|
|
if self.training:
|
|
cluster_size = embed_onehot.sum(0)
|
|
self.all_reduce_fn(cluster_size)
|
|
|
|
ema_inplace(self.cluster_size, cluster_size, self.decay)
|
|
|
|
embed_sum = flatten.t() @ embed_onehot
|
|
self.all_reduce_fn(embed_sum)
|
|
|
|
ema_inplace(self.embed_avg, embed_sum.t(), self.decay)
|
|
cluster_size = laplace_smoothing(self.cluster_size, self.codebook_size, self.eps) * self.cluster_size.sum()
|
|
embed_normalized = self.embed_avg / cluster_size.unsqueeze(1)
|
|
self.embed.data.copy_(embed_normalized)
|
|
self.expire_codes_(x)
|
|
|
|
return quantize, embed_ind
|
|
|
|
class CosineSimCodebook(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
codebook_size,
|
|
kmeans_init = False,
|
|
kmeans_iters = 10,
|
|
decay = 0.8,
|
|
eps = 1e-5,
|
|
threshold_ema_dead_code = 2,
|
|
use_ddp = False,
|
|
learnable_codebook = False,
|
|
sample_codebook_temp = 0.
|
|
):
|
|
super().__init__()
|
|
self.decay = decay
|
|
|
|
if not kmeans_init:
|
|
embed = l2norm(torch.randn(codebook_size, dim))
|
|
else:
|
|
embed = torch.zeros(codebook_size, dim)
|
|
|
|
self.codebook_size = codebook_size
|
|
self.kmeans_iters = kmeans_iters
|
|
self.eps = eps
|
|
self.threshold_ema_dead_code = threshold_ema_dead_code
|
|
self.sample_codebook_temp = sample_codebook_temp
|
|
|
|
self.all_reduce_fn = distributed.all_reduce if use_ddp else noop
|
|
self.register_buffer('initted', torch.Tensor([not kmeans_init]))
|
|
self.register_buffer('cluster_size', torch.zeros(codebook_size))
|
|
|
|
self.learnable_codebook = learnable_codebook
|
|
if learnable_codebook:
|
|
self.embed = nn.Parameter(embed)
|
|
else:
|
|
self.register_buffer('embed', embed)
|
|
|
|
@torch.jit.ignore
|
|
def init_embed_(self, data):
|
|
if self.initted:
|
|
return
|
|
|
|
embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters,
|
|
use_cosine_sim = True)
|
|
self.embed.data.copy_(embed)
|
|
self.cluster_size.data.copy_(cluster_size)
|
|
self.initted.data.copy_(torch.Tensor([True]))
|
|
|
|
def replace(self, samples, mask):
|
|
samples = l2norm(samples)
|
|
modified_codebook = torch.where(
|
|
mask[..., None],
|
|
sample_vectors(samples, self.codebook_size),
|
|
self.embed
|
|
)
|
|
self.embed.data.copy_(modified_codebook)
|
|
|
|
def expire_codes_(self, batch_samples):
|
|
if self.threshold_ema_dead_code == 0:
|
|
return
|
|
|
|
expired_codes = self.cluster_size < self.threshold_ema_dead_code
|
|
if not torch.any(expired_codes):
|
|
return
|
|
batch_samples = rearrange(batch_samples, '... d -> (...) d')
|
|
self.replace(batch_samples, mask = expired_codes)
|
|
|
|
@autocast(enabled = False)
|
|
def forward(self, x, used_codes=[]):
|
|
shape, dtype = x.shape, x.dtype
|
|
flatten = rearrange(x, '... d -> (...) d')
|
|
flatten = l2norm(flatten)
|
|
|
|
self.init_embed_(flatten)
|
|
embed = self.embed if not self.learnable_codebook else self.embed.detach()
|
|
embed = l2norm(embed)
|
|
|
|
dist = flatten @ embed.t()
|
|
for uc in used_codes:
|
|
mask = torch.arange(0, self.codebook_size, device=x.device).unsqueeze(0).repeat(x.shape[0],1) == uc.unsqueeze(1)
|
|
dist[mask] = -torch.inf
|
|
embed_ind = gumbel_sample(dist, dim = -1, temperature = self.sample_codebook_temp)
|
|
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
|
|
embed_ind = embed_ind.view(*shape[:-1])
|
|
|
|
quantize = F.embedding(embed_ind, self.embed)
|
|
# Perform the gumbel trick on the end result (during training)
|
|
if self.training:
|
|
quantize = flatten + (quantize - flatten).detach()
|
|
|
|
if self.training:
|
|
bins = embed_onehot.sum(0)
|
|
self.all_reduce_fn(bins)
|
|
|
|
ema_inplace(self.cluster_size, bins, self.decay)
|
|
|
|
zero_mask = (bins == 0)
|
|
bins = bins.masked_fill(zero_mask, 1.)
|
|
|
|
embed_sum = flatten.t() @ embed_onehot
|
|
self.all_reduce_fn(embed_sum)
|
|
|
|
embed_normalized = (embed_sum / bins.unsqueeze(0)).t()
|
|
embed_normalized = l2norm(embed_normalized)
|
|
embed_normalized = torch.where(zero_mask[..., None], embed,
|
|
embed_normalized)
|
|
ema_inplace(self.embed, embed_normalized, self.decay)
|
|
self.expire_codes_(x)
|
|
|
|
return quantize, embed_ind
|
|
|
|
# main class
|
|
|
|
class VectorQuantize(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
codebook_size,
|
|
n_embed = None,
|
|
codebook_dim = None,
|
|
decay = 0.8,
|
|
eps = 1e-5,
|
|
kmeans_init = False,
|
|
kmeans_iters = 10,
|
|
use_cosine_sim = False,
|
|
threshold_ema_dead_code = 0,
|
|
channel_last = True,
|
|
accept_image_fmap = False,
|
|
commitment_weight = None,
|
|
commitment = 1., # deprecate in next version, turn off by default
|
|
orthogonal_reg_weight = 0.,
|
|
orthogonal_reg_active_codes_only = False,
|
|
orthogonal_reg_max_codes = None,
|
|
sample_codebook_temp = 0.,
|
|
sync_codebook = False
|
|
):
|
|
super().__init__()
|
|
n_embed = default(n_embed, codebook_size)
|
|
|
|
codebook_dim = default(codebook_dim, dim)
|
|
requires_projection = codebook_dim != dim
|
|
self.project_in = nn.Linear(dim, codebook_dim) if requires_projection \
|
|
else nn.Identity()
|
|
self.project_out = nn.Linear(codebook_dim, dim) if requires_projection \
|
|
else nn.Identity()
|
|
|
|
self.eps = eps
|
|
self.commitment_weight = default(commitment_weight, commitment)
|
|
|
|
has_codebook_orthogonal_loss = orthogonal_reg_weight > 0
|
|
self.orthogonal_reg_weight = orthogonal_reg_weight
|
|
self.orthogonal_reg_active_codes_only = orthogonal_reg_active_codes_only
|
|
self.orthogonal_reg_max_codes = orthogonal_reg_max_codes
|
|
|
|
codebook_class = EuclideanCodebook if not use_cosine_sim \
|
|
else CosineSimCodebook
|
|
|
|
self._codebook = codebook_class(
|
|
dim = codebook_dim,
|
|
codebook_size = n_embed,
|
|
kmeans_init = kmeans_init,
|
|
kmeans_iters = kmeans_iters,
|
|
decay = decay,
|
|
eps = eps,
|
|
threshold_ema_dead_code = threshold_ema_dead_code,
|
|
use_ddp = sync_codebook,
|
|
learnable_codebook = has_codebook_orthogonal_loss,
|
|
sample_codebook_temp = sample_codebook_temp
|
|
)
|
|
|
|
self.codebook_size = codebook_size
|
|
|
|
self.accept_image_fmap = accept_image_fmap
|
|
self.channel_last = channel_last
|
|
|
|
@property
|
|
def codebook(self):
|
|
return self._codebook.embed
|
|
|
|
def forward(self, x, used_codes=None):
|
|
shape, device, codebook_size = x.shape, x.device, self.codebook_size
|
|
|
|
need_transpose = not self.channel_last and not self.accept_image_fmap
|
|
|
|
if self.accept_image_fmap:
|
|
height, width = x.shape[-2:]
|
|
x = rearrange(x, 'b c h w -> b (h w) c')
|
|
|
|
if need_transpose:
|
|
x = rearrange(x, 'b d n -> b n d')
|
|
|
|
x = self.project_in(x)
|
|
|
|
quantize, embed_ind = self._codebook(x, used_codes)
|
|
|
|
loss = torch.tensor([0.], device = device, requires_grad = self.training)
|
|
|
|
if self.training:
|
|
if self.commitment_weight > 0:
|
|
commit_loss = F.mse_loss(quantize.detach(), x)
|
|
loss = loss + commit_loss * self.commitment_weight
|
|
|
|
if self.orthogonal_reg_weight > 0:
|
|
codebook = self.codebook
|
|
|
|
if self.orthogonal_reg_active_codes_only:
|
|
# only calculate orthogonal loss for the activated codes for this batch
|
|
unique_code_ids = torch.unique(embed_ind)
|
|
codebook = codebook[unique_code_ids]
|
|
|
|
num_codes = codebook.shape[0]
|
|
if exists(self.orthogonal_reg_max_codes) and num_codes > self.orthogonal_reg_max_codes:
|
|
rand_ids = torch.randperm(num_codes, device = device)[:self.orthogonal_reg_max_codes]
|
|
codebook = codebook[rand_ids]
|
|
|
|
orthogonal_reg_loss = orthgonal_loss_fn(codebook)
|
|
loss = loss + orthogonal_reg_loss * self.orthogonal_reg_weight
|
|
|
|
quantize = self.project_out(quantize)
|
|
|
|
if need_transpose:
|
|
quantize = rearrange(quantize, 'b n d -> b d n')
|
|
|
|
if self.accept_image_fmap:
|
|
quantize = rearrange(quantize, 'b (h w) c -> b c h w', h = height, w = width)
|
|
embed_ind = rearrange(embed_ind, 'b (h w) -> b h w', h = height, w = width)
|
|
|
|
return quantize, embed_ind, loss
|