DL-Art-School/dlas/models/vqvae/dvae.py

246 lines
8.2 KiB
Python

import functools
from math import sqrt
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from dlas.models.vqvae.vector_quantizer import VectorQuantize
from dlas.trainer.networks import register_model
from dlas.utils.util import opt_get
def eval_decorator(fn):
def inner(model, *args, **kwargs):
was_training = model.training
model.eval()
out = fn(model, *args, **kwargs)
model.train(was_training)
return out
return inner
class ResBlock(nn.Module):
def __init__(self, chan, conv, activation):
super().__init__()
self.net = nn.Sequential(
conv(chan, chan, 3, padding=1),
activation(),
conv(chan, chan, 3, padding=1),
activation(),
conv(chan, chan, 1)
)
def forward(self, x):
return self.net(x) + x
class UpsampledConv(nn.Module):
def __init__(self, conv, *args, **kwargs):
super().__init__()
assert 'stride' in kwargs.keys()
self.stride = kwargs['stride']
del kwargs['stride']
self.conv = conv(*args, **kwargs)
def forward(self, x):
up = nn.functional.interpolate(
x, scale_factor=self.stride, mode='nearest')
return self.conv(up)
class DiscreteVAE(nn.Module):
def __init__(
self,
positional_dims=2,
num_tokens=512,
codebook_dim=512,
num_layers=3,
num_resnet_blocks=0,
hidden_dim=64,
channels=3,
stride=2,
kernel_size=3,
activation='relu',
straight_through=False,
record_codes=False,
discretization_loss_averaging_steps=100,
quantizer_use_cosine_sim=True,
quantizer_codebook_misses_to_expiration=40,
quantizer_codebook_embedding_compression=None,
):
super().__init__()
assert num_layers >= 1, 'number of layers must be greater than or equal to 1'
has_resblocks = num_resnet_blocks > 0
self.num_tokens = num_tokens
self.num_layers = num_layers
self.straight_through = straight_through
self.positional_dims = positional_dims
# This VAE only supports 1d and 2d inputs for now.
assert positional_dims > 0 and positional_dims < 3
if positional_dims == 2:
conv = nn.Conv2d
conv_transpose = functools.partial(UpsampledConv, conv)
else:
conv = nn.Conv1d
conv_transpose = functools.partial(UpsampledConv, conv)
if activation == 'relu':
act = nn.ReLU
elif activation == 'silu':
act = nn.SiLU
else:
assert NotImplementedError()
enc_chans = [hidden_dim * 2 ** i for i in range(num_layers)]
dec_chans = list(reversed(enc_chans))
enc_chans = [channels, *enc_chans]
dec_init_chan = codebook_dim if not has_resblocks else dec_chans[0]
dec_chans = [dec_init_chan, *dec_chans]
enc_chans_io, dec_chans_io = map(lambda t: list(
zip(t[:-1], t[1:])), (enc_chans, dec_chans))
enc_layers = []
dec_layers = []
pad = (kernel_size - 1) // 2
for (enc_in, enc_out), (dec_in, dec_out) in zip(enc_chans_io, dec_chans_io):
enc_layers.append(nn.Sequential(
conv(enc_in, enc_out, kernel_size, stride=stride, padding=pad), act()))
dec_layers.append(nn.Sequential(conv_transpose(
dec_in, dec_out, kernel_size, stride=stride, padding=pad), act()))
for _ in range(num_resnet_blocks):
dec_layers.insert(0, ResBlock(dec_chans[1], conv, act))
enc_layers.append(ResBlock(enc_chans[-1], conv, act))
if num_resnet_blocks > 0:
dec_layers.insert(0, conv(codebook_dim, dec_chans[1], 1))
enc_layers.append(conv(enc_chans[-1], codebook_dim, 1))
dec_layers.append(conv(dec_chans[-1], channels, 1))
self.encoder = nn.Sequential(*enc_layers)
self.quantizer = VectorQuantize(codebook_dim, num_tokens, codebook_dim=quantizer_codebook_embedding_compression,
use_cosine_sim=quantizer_use_cosine_sim,
max_codebook_misses_before_expiry=quantizer_codebook_misses_to_expiration)
self.decoder = nn.Sequential(*dec_layers)
self.loss_fn = F.mse_loss
self.record_codes = record_codes
if record_codes:
self.codes = torch.zeros((1228800,), dtype=torch.long)
self.code_ind = 0
self.internal_step = 0
def get_debug_values(self, step, __):
if self.record_codes:
# Report annealing schedule
return {'histogram_codes': self.codes}
else:
return {}
@torch.no_grad()
@eval_decorator
def get_codebook_indices(self, images):
logits = self.encoder(images).permute(
(0, 2, 3, 1) if len(images.shape) == 4 else (0, 2, 1))
sampled, codes, commitment_loss = self.quantizer(logits)
return codes
def decode(
self,
img_seq
):
self.log_codes(img_seq)
image_embeds = self.quantizer.decode(img_seq)
b, n, d = image_embeds.shape
kwargs = {}
if self.positional_dims == 1:
arrange = 'b n d -> b d n'
else:
h = w = int(sqrt(n))
arrange = 'b (h w) d -> b d h w'
kwargs = {'h': h, 'w': w}
image_embeds = rearrange(image_embeds, arrange, **kwargs)
images = [image_embeds]
for layer in self.decoder:
images.append(layer(images[-1]))
return images[-1], images[-2]
def infer(self, img):
logits = self.encoder(img).permute(
(0, 2, 3, 1) if len(img.shape) == 4 else (0, 2, 1))
sampled, codes, commitment_loss = self.quantizer(logits)
return self.decode(codes)
# Note: This module is not meant to be run in forward() except while training. It has special logic which performs
# evaluation using quantized values when it detects that it is being run in eval() mode, which will be substantially
# more lossy (but useful for determining network performance).
def forward(
self,
img
):
logits = self.encoder(img).permute(
(0, 2, 3, 1) if len(img.shape) == 4 else (0, 2, 1))
sampled, codes, commitment_loss = self.quantizer(logits)
sampled = sampled.permute(
(0, 3, 1, 2) if len(img.shape) == 4 else (0, 2, 1))
if self.training:
out = sampled
for d in self.decoder:
out = d(out)
else:
# This is non-differentiable, but gives a better idea of how the network is actually performing.
out, _ = self.decode(codes)
# reconstruction loss
recon_loss = self.loss_fn(img, out, reduction='none')
# This is so we can debug the distribution of codes being learned.
self.log_codes(codes)
return recon_loss, commitment_loss, out
def log_codes(self, codes):
# This is so we can debug the distribution of codes being learned.
if self.record_codes and self.internal_step % 50 == 0:
codes = codes.flatten()
l = codes.shape[0]
i = self.code_ind if (
self.codes.shape[0] - self.code_ind) > l else self.codes.shape[0] - l
self.codes[i:i+l] = codes.cpu()
self.code_ind = self.code_ind + l
if self.code_ind >= self.codes.shape[0]:
self.code_ind = 0
self.internal_step += 1
@register_model
def register_dvae(opt_net, opt):
return DiscreteVAE(**opt_get(opt_net, ['kwargs'], {}))
if __name__ == '__main__':
# v = DiscreteVAE()
# o=v(torch.randn(1,3,256,256))
# print(o.shape)
v = DiscreteVAE(channels=80, positional_dims=1, num_tokens=4096, codebook_dim=1024,
hidden_dim=512, stride=2, num_resnet_blocks=2, kernel_size=3, num_layers=2,
quantizer_codebook_embedding_compression=64)
# v.eval()
loss, commitment, out = v(torch.randn(1, 80, 256))
print(out.shape)
codes = v.get_codebook_indices(torch.randn(1, 80, 256))
back, back_emb = v.decode(codes)
print(back.shape)