DL-Art-School/codes/scripts/audio/gen/music_joiner.py
2022-07-17 18:24:56 -06:00

97 lines
5.9 KiB
Python

import os
import torch
import numpy as np
import torchaudio
import torchvision
from tqdm import tqdm
from models.audio.music.tfdpc_v5 import TransformerDiffusionWithPointConditioning
from utils.music_utils import get_cheater_decoder, get_mel2wav_v3_model
from utils.util import load_audio
from trainer.injectors.audio_injectors import TorchMelSpectrogramInjector, denormalize_mel, pixel_shuffle_1d
from trainer.injectors.audio_injectors import MusicCheaterLatentInjector
from models.diffusion.respace import SpacedDiffusion
from models.diffusion.respace import space_timesteps
from models.diffusion.gaussian_diffusion import get_named_beta_schedule
def join_music(clip1, clip1_cut, clip2, clip2_cut, mix_time, results_dir):
with torch.no_grad():
spec_fn = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 11000, 'filter_length': 16000, 'true_normalization': True,
'normalize': True, 'in': 'in', 'out': 'out'}, {}).cuda()
cheater_encoder = MusicCheaterLatentInjector({'in': 'in', 'out': 'out'}, {}).cuda()
"""
# Original model
model = TransformerDiffusionWithPointConditioning(in_channels=256, out_channels=512, model_channels=1024,
contraction_dim=512, num_heads=8, num_layers=12, dropout=0,
use_fp16=False, unconditioned_percentage=0, time_proj=True).eval().cuda()
model.load_state_dict(torch.load('x:/dlas/experiments/train_music_cheater_gen_v5/models/206000_generator_ema.pth'))
diffusion_type = 'linear'
"""
model = TransformerDiffusionWithPointConditioning(in_channels=256, out_channels=512, model_channels=1024,
contraction_dim=512, num_heads=8, num_layers=32, dropout=0,
use_fp16=False, unconditioned_percentage=0, time_proj=False,
new_cond=True, regularization=False).eval().cuda()
model.load_state_dict(torch.load('x:/dlas/experiments/train_music_cheater_gen_v5_cosine_40_lyr/models/40000_generator_ema.pth'))
diffusion_type = 'cosine'
diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [256]), model_mean_type='epsilon',
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule(diffusion_type, 4000),
conditioning_free=True, conditioning_free_k=1)
clip1 = load_audio(clip1, 22050).cuda()
clip1_mel = spec_fn({'in': clip1.unsqueeze(0)})['out']
clip1_cheater = cheater_encoder({'in': clip1_mel})['out']
clip1_leadin = clip1_cheater[:,:,-60:]
clip1_cheater = clip1_cheater[:,:,:-60]
clip2 = load_audio(clip2, 22050).cuda()
clip2_mel = spec_fn({'in': clip2.unsqueeze(0)})['out']
clip2_cheater = cheater_encoder({'in': clip2_mel})['out']
clip2_leadin = clip2_cheater[:,:,:60]
clip2_cheater = clip2_cheater[:,:,60:]
inp = torch.cat([clip1_leadin, torch.zeros(1,256,240, device='cuda'), clip2_leadin], dim=-1)
mask = torch.ones_like(inp)
mask[:,:,60:-60] = 0
gen_cheater = diffuser.ddim_sample_loop_with_guidance(model, inp, mask, # causal=True, causal_slope=4,
model_kwargs={'cond_left': clip1_cheater, 'cond_right': clip2_cheater})
cheater_to_mel = get_cheater_decoder().diff.cuda()
cheater_decoder_diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [64]), model_mean_type='epsilon',
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000),
conditioning_free=True, conditioning_free_k=1)
m2w = get_mel2wav_v3_model().cuda()
spectral_diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [32]), model_mean_type='epsilon',
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000),
conditioning_free=True, conditioning_free_k=1)
MAX_CONTEXT = 30 * 22050 // 4096
chunks = torch.split(gen_cheater, MAX_CONTEXT, dim=-1)
gen_wavs = []
for i, chunk_cheater in enumerate(tqdm(chunks)):
gen_mel = cheater_decoder_diffuser.ddim_sample_loop(cheater_to_mel, (1,256,chunk_cheater.shape[-1]*16), progress=True,
model_kwargs={'codes': chunk_cheater.permute(0,2,1)})
torchvision.utils.save_image((gen_mel + 1)/2, f'{results_dir}/mel_{i}.png')
gen_mel_denorm = denormalize_mel(gen_mel)
output_shape = (1,16,gen_mel_denorm.shape[-1]*256//16)
wav = spectral_diffuser.ddim_sample_loop(m2w, output_shape, progress=True, model_kwargs={'codes': gen_mel_denorm})
gen_wavs.append(pixel_shuffle_1d(wav, 16))
gen_wav = torch.cat(gen_wavs, dim=-1)
torchaudio.save(f'{results_dir}/out.wav', gen_wav.squeeze(1).cpu(), 22050)
if __name__ == '__main__':
results_dir = '../results/audio_joiner'
#clip1 = 'Y:\\sources\\music\\manual_podcasts_music\\2\\The Glitch Mob - Discography\\2014 - Love, Death Immortality\\2. Our Demons (feat. Aja Volkman).mp3'
clip1 = 'Y:\\separated\\bt-music-5\\[2002] Gutterflower\\02 - Think About Me\\00000\\no_vocals.wav'
clip1_cut = 35 # Seconds
#clip2 = 'Y:\\sources\\music\\manual_podcasts_music\\2\\The Glitch Mob - Discography\\2014 - Love, Death Immortality\\9. Carry The Sun.mp3'
clip2 = 'Y:\\separated\\bt-music-5\\[2002] Gutterflower\\02 - Think About Me\\00003\\no_vocals.wav'
clip2_cut = 1
mix_time = 10
os.makedirs(results_dir, exist_ok=True)
join_music(clip1, clip1_cut, clip2, clip2_cut, mix_time, results_dir)