forked from mrq/DL-Art-School
256 lines
15 KiB
Markdown
256 lines
15 KiB
Markdown
There are three kinds of datasets: training dataset, validation dataset, and testing dataset. Usually, we do not explicitly distinguish between the validation and testing datasets in image/video restoration. So we use the validation/testing dataset in our description. <br/>
|
||
We recommend to use [LMDB](https://lmdb.readthedocs.io/en/release/) (Lightning Memory-Mapped Database) formats for the training datasets, and directly read images (using image folder) during validation/testing. So there is no need to prepare LMDB files for evaluation/testing datasets.
|
||
|
||
---
|
||
We organize the training datasets in LMDB format for **faster training IO speed**. If you do not want to use LMDB, you can also use the **image folder**.<br/>
|
||
Besides the standard LMDB folder, we add an extra `meta_info.pkl` file to record the **meta information** of the dataset, such as the dataset name, keys and resolution of each image in the dataset.
|
||
|
||
Take the DIV2K dataset in LMDB for example, the folder structure and meta information are as follows:
|
||
#### folder structure
|
||
```
|
||
- DIV2K800_sub.lmdb
|
||
|--- data.mdb
|
||
|--- lock.mdb
|
||
|--- meta_info.pkl
|
||
```
|
||
#### meta information in `meta_info.pkl`
|
||
`meta_info.pkl` is a python-pickled dict.
|
||
|
||
| Key | Value |
|
||
|:----------:|:---------------------------------------------------------:|
|
||
| name | `DIV2K800_sub_GT` |
|
||
| keys | [ `0001_s001`, `0001_s002`, ..., `0800_s040` ] |
|
||
| resolution | [ `3_480_480` ] |
|
||
|
||
If all the images in the LMDB file have the same resolution, only one copy of `resolution` is stored. Otherwise, each key has its corresponding `resolution`.
|
||
|
||
----
|
||
|
||
## Table of Contents
|
||
1. [Prepare DIV2K](#prepare-div2k)
|
||
1. [Common Image SR Datasets](#common-image-sr-datasets)
|
||
1. [Prepare Vimeo90K](#prepare-vimeo90k)
|
||
1. [Prepare REDS](#prepare-reds)
|
||
|
||
The following shows how to prepare the datasets in detail.<br/>
|
||
It is recommended to symlink the dataset root to $MMSR/datasets. If your folder structure is different, you may need to change the corresponding paths in config files.
|
||
|
||
## Prepare DIV2K
|
||
[DIV2K](https://data.vision.ee.ethz.ch/cvl/DIV2K/) is a widely-used dataset in image super-resolution. In many research works, a MATLAB bicubic downsampling kernel is assumed. It may not be practical because the MATLAB bicubic downsampling kernel is not a good approximation for the implicit degradation kernels in real-world scenarios. And there is another topic named **blind restoration** that deals with this gap.
|
||
|
||
We provide a demo script for DIV2K X4 datasets preparation.
|
||
```
|
||
cd codes/data_scripts
|
||
bash prepare_DIV2K_x4_dataset.sh
|
||
```
|
||
The specific steps are as follows:
|
||
|
||
**Step 1**: Download the GT images and corresponding LR images from the [official DIV2K website](https://data.vision.ee.ethz.ch/cvl/DIV2K/).<br/>
|
||
Here are shortcuts for the download links:
|
||
|
||
| Name | links (training) | links (validation)|
|
||
|:----------:|:----------:|:----------:|
|
||
|Ground-Truth|[DIV2K_train_HR](http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_train_HR.zip)|[DIV2K_valid_HR](http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_valid_HR.zip)|
|
||
|LRx2 (MATLAB bicubic)|[DIV2K_train_LR_bicubic_X2](http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_train_LR_bicubic_X2.zip)|[DIV2K_valid_LR_bicubic_X2](http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_valid_LR_bicubic_X2.zip)|
|
||
|LRx3 (MATLAB bicubic)|[DIV2K_train_LR_bicubic_X3](http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_train_LR_bicubic_X3.zip)|[DIV2K_valid_LR_bicubic_X3](http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_valid_LR_bicubic_X3.zip)|
|
||
|LRx4 (MATLAB bicubic)|[DIV2K_train_LR_bicubic_X4](http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_train_LR_bicubic_X4.zip)|[DIV2K_valid_LR_bicubic_X4](http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_valid_LR_bicubic_X4.zip)|
|
||
|LRx8 (MATLAB bicubic)|[DIV2K_train_LR_bicubic_X8](http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_train_LR_x8.zip)|[DIV2K_valid_LR_bicubic_X8](http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_valid_LR_x8.zip)|
|
||
|
||
**Step 2**: Rename the downloaded LR images to have the same name as those of GT.<br/> Run the script `data_scripts/rename.py`. Remember to modify the folder path.
|
||
|
||
**Step 3 (optional)**: Generate low-resolution counterparts. <br/>If you have downloaded the LR datasets, skip this step. Otherwise, you can use the script `data_scripts/generate_mod_LR_bic.m` or `data_scripts/generate_mod_LR_bic.py` to generate LR images. Make sure the LR and GT pairs have the same name.
|
||
|
||
**Step 4**: Crop to sub-images. <br/>DIV2K has 2K resolution (e.g., 2048 × 1080) images but the training patches are usually very small (e.g., 128x128). So there is a waste if reading the whole image but only using a very small part of it. In order to accelerate the IO speed during training, we crop the 2K resolution images to sub-images (here, we crop to 480x480 sub-images). You can skip this step if your have a high IO speed.<br/>
|
||
Note that the size of sub-images is different from the training patch size (`GT_size`) defined in the config file. Specifically, the sub-images with 480x480 are stored in the LMDB files. The dataloader will further randomly crop the sub-images to `GT_size x GT_size` patches for training. <br/>
|
||
Use the script `data_scripts/extract_subimages.py` with `mode = 'pair'`. Remember to modify the following configurations if you have different settings:
|
||
```
|
||
GT_folder = '../../datasets/DIV2K/DIV2K800'
|
||
LR_folder = '../../datasets/DIV2K/DIV2K800_bicLRx4'
|
||
save_GT_folder = '../../datasets/DIV2K/DIV2K800_sub'
|
||
save_LR_folder = '../../datasets/DIV2K/DIV2K800_sub_bicLRx4'
|
||
scale_ratio = 4
|
||
```
|
||
**Step 5**: Create LMDB files. <br/>You need to run the script `data_scripts/create_lmdb.py` separately for GT and LR images.<br/>
|
||
|
||
**Step 6**: Test the dataloader with the script `data_scripts/test_dataloader.py`.
|
||
|
||
This procedure is also applied to other datasets, such as 291 images, or your custom datasets.
|
||
```
|
||
@InProceedings{Agustsson_2017_CVPR_Workshops,
|
||
author = {Agustsson, Eirikur and Timofte, Radu},
|
||
title = {NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study},
|
||
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
|
||
month = {July},
|
||
year = {2017}
|
||
}
|
||
```
|
||
## Common Image SR Datasets
|
||
We provide a list of common image super-resolution datasets. You can download the images from the official website or Google Drive or Baidu Drive.
|
||
|
||
<table>
|
||
<tr>
|
||
<th>Name</th>
|
||
<th>Datasets</th>
|
||
<th>Short Description</th>
|
||
<th>Google Drive</th>
|
||
<th>Baidu Drive</th>
|
||
</tr>
|
||
<tr>
|
||
<td rowspan="3">Classical SR Training</td>
|
||
<td>T91</td>
|
||
<td><sub>91 images for training</sub></td>
|
||
<td rowspan="9"><a href="https://drive.google.com/drive/folders/1pRmhEmmY-tPF7uH8DuVthfHoApZWJ1QU?usp=sharing">Google Drive</a></td>
|
||
<td rowspan="9"><a href="https://pan.baidu.com/s/1q_1ERCMqALH0xFwjLM0pTg">Baidu Drive</a></td>
|
||
</tr>
|
||
<tr>
|
||
<td><a href="https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/">BSDS200</a></td>
|
||
<td><sub>A subset (train) of BSD500 for training</sub></td>
|
||
</tr>
|
||
<tr>
|
||
<td><a href="http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html">General100</a></td>
|
||
<td><sub>100 images for training</sub></td>
|
||
</tr>
|
||
<tr>
|
||
<td rowspan="6">Classical SR Testing</td>
|
||
<td>Set5</td>
|
||
<td><sub>Set5 test dataset</sub></td>
|
||
</tr>
|
||
<tr>
|
||
<td>Set14</td>
|
||
<td><sub>Set14 test dataset</sub></td>
|
||
</tr>
|
||
<tr>
|
||
<td><a href="https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/">BSDS100</a></td>
|
||
<td><sub>A subset (test) of BSD500 for testing</sub></td>
|
||
</tr>
|
||
<tr>
|
||
<td><a href="https://sites.google.com/site/jbhuang0604/publications/struct_sr">urban100</a></td>
|
||
<td><sub>100 building images for testing (regular structures)</sub></td>
|
||
</tr>
|
||
<tr>
|
||
<td><a href="http://www.manga109.org/en/">manga109</a></td>
|
||
<td><sub>109 images of Japanese manga for testing</sub></td>
|
||
</tr>
|
||
<tr>
|
||
<td>historical</td>
|
||
<td><sub>10 gray LR images without the ground-truth</sub></td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td rowspan="3">2K Resolution</td>
|
||
<td><a href="https://data.vision.ee.ethz.ch/cvl/DIV2K/">DIV2K</a></td>
|
||
<td><sub>proposed in <a href="http://www.vision.ee.ethz.ch/ntire17/">NTIRE17</a> (800 train and 100 validation)</sub></td>
|
||
<td rowspan="3"><a href="https://drive.google.com/drive/folders/1B-uaxvV9qeuQ-t7MFiN1oEdA6dKnj2vW?usp=sharing">Google Drive</a></td>
|
||
<td rowspan="3"><a href="https://pan.baidu.com/s/1CFIML6KfQVYGZSNFrhMXmA">Baidu Drive</a></td>
|
||
</tr>
|
||
<tr>
|
||
<td><a href="https://github.com/LimBee/NTIRE2017">Flickr2K</a></td>
|
||
<td><sub>2650 2K images from Flickr for training</sub></td>
|
||
</tr>
|
||
<tr>
|
||
<td>DF2K</td>
|
||
<td><sub>A merged training dataset of DIV2K and Flickr2K</sub></td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td rowspan="2">OST (Outdoor Scenes)</td>
|
||
<td>OST Training</td>
|
||
<td><sub>7 categories images with rich textures</sub></td>
|
||
<td rowspan="2"><a href="https://drive.google.com/drive/u/1/folders/1iZfzAxAwOpeutz27HC56_y5RNqnsPPKr">Google Drive</a></td>
|
||
<td rowspan="2"><a href="https://pan.baidu.com/s/1neUq5tZ4yTnOEAntZpK_rQ#list/path=%2Fpublic%2FSFTGAN&parentPath=%2Fpublic">Baidu Drive</a></td>
|
||
</tr>
|
||
<tr>
|
||
<td>OST300</td>
|
||
<td><sub>300 test images of outdoor scences</sub></td>
|
||
</tr>
|
||
|
||
<tr>
|
||
<td >PIRM</td>
|
||
<td>PIRM</td>
|
||
<td><sub>PIRM self-val, val, test datasets</sub></td>
|
||
<td rowspan="2"><a href="https://drive.google.com/drive/folders/17FmdXu5t8wlKwt8extb_nQAdjxUOrb1O?usp=sharing">Google Drive</a></td>
|
||
<td rowspan="2"><a href="https://pan.baidu.com/s/1gYv4tSJk_RVCbCq4B6UxNQ">Baidu Drive</a></td>
|
||
</tr>
|
||
</table>
|
||
|
||
## Prepare Vimeo90K
|
||
The description of the Vimeo90K can be found in [Open-VideoRestoration](https://xinntao.github.io/open-videorestoration/rst_src/datasets_sr.html#vimeo90k) and [the official webpage](http://toflow.csail.mit.edu/).<br/>
|
||
|
||
**Step 1**: Download the dataset<br/>
|
||
Download the [`Septuplets dataset --> The original training + test set (82GB)`](http://data.csail.mit.edu/tofu/dataset/vimeo_septuplet.zip). This is the Ground-Truth (GT). There is a `sep_trainlist.txt` file recording the training samples in the download zip file.
|
||
|
||
**Step 2**: Generate the low-resolution images<br/>
|
||
The low-resolution images in the Vimeo90K test dataset are generated with the MATLAB bicubic downsampling kernel. Use the script `data_scripts/generate_LR_Vimeo90K.m` (run in MATLAB) to generate the low-resolution images.
|
||
|
||
**Step 3**: Create LMDB files<br/>
|
||
Use the script `data_scripts/create_lmdb.py` to generate the lmdb files separately for GT and LR images. You need to modify the configurations in the script:
|
||
1) For GT
|
||
```
|
||
dataset = 'vimeo90K'
|
||
mode = 'GT'
|
||
```
|
||
2) For LR
|
||
```
|
||
dataset = 'vimeo90K'
|
||
mode = 'LR'
|
||
```
|
||
|
||
**Step 4**: Test the dataloader with the script `data_scripts/test_dataloader.py`.
|
||
|
||
```
|
||
@Article{xue2017video,
|
||
author = {Xue, Tianfan and Chen, Baian and Wu, Jiajun and Wei, Donglai and Freeman, William T},
|
||
title = {Video enhancement with task-oriented flow},
|
||
journal = {International Journal of Computer Vision},
|
||
year = {2017}
|
||
}
|
||
```
|
||
|
||
## Prepare REDS
|
||
We re-group the REDS training and validation sets as follows:
|
||
|
||
| name | from | total number |
|
||
|:----------:|:----------:|:----------:|
|
||
| REDS training | the original training (except 4 clips) and validation sets | 266 clips |
|
||
| REDS4 testing | 000, 011, 015 and 020 clips from the *original training set* | 4 clips |
|
||
|
||
The description of the REDS dataset can be found in [Open-VideoRestoration](https://xinntao.github.io/open-videorestoration/rst_src/datasets_sr.html#reds) and the [official website](https://seungjunnah.github.io/Datasets/reds.html).
|
||
|
||
**Step 1**: Download the datasets<br/>
|
||
You can download the REDS datasets from the [official website](https://seungjunnah.github.io/Datasets/reds.html). The download links are also sorted as follows:
|
||
|
||
| track | links (training) | links (validation)|links (testing)|
|
||
|:----------:|:----------:|:----------:|:----------:|
|
||
| Ground-truth| [train_sharp - part1](https://data.vision.ee.ethz.ch/timofter/NTIRE19video/train_sharp_part1.zip), [part2](https://data.vision.ee.ethz.ch/timofter/NTIRE19video/train_sharp_part2.zip), [part3](https://data.vision.ee.ethz.ch/timofter/NTIRE19video/train_sharp_part3.zip) |[val_sharp](https://cv.snu.ac.kr/~snah/Deblur/dataset/REDS/val_sharp.zip) | Not Available |- |
|
||
| SR-clean | [train_sharp_bicubic](https://data.vision.ee.ethz.ch/timofter/NTIRE19video/train_sharp_bicubic.zip) | [val_sharp_bicubic](https://data.vision.ee.ethz.ch/timofter/NTIRE19video/val_sharp_bicubic.zip) |[test_sharp_bicubic](https://data.vision.ee.ethz.ch/timofter/NTIRE19video/test_sharp_bicubic.zip) |
|
||
| SR-blur) | [train_blur_bicubic](https://data.vision.ee.ethz.ch/timofter/NTIRE19video/train_blur_bicubic.zip) | [val_blur_bicubic](https://data.vision.ee.ethz.ch/timofter/NTIRE19video/val_blur_bicubic.zip) |[test_blur_bicubic](https://data.vision.ee.ethz.ch/timofter/NTIRE19video/test_blur_bicubic.zip) |
|
||
| Deblurring | [train_blur - part1](https://data.vision.ee.ethz.ch/timofter/NTIRE19video/train_blur_part1.zip), [part2](https://data.vision.ee.ethz.ch/timofter/NTIRE19video/train_blur_part2.zip), [part3](https://data.vision.ee.ethz.ch/timofter/NTIRE19video/train_blur_part3.zip) | [val_blur](https://data.vision.ee.ethz.ch/timofter/NTIRE19video/val_blur.zip) |[test_blur](https://data.vision.ee.ethz.ch/timofter/NTIRE19video/test_blur.zip) |
|
||
| Deblurring - Compression | [train_blur_comp - part1](https://data.vision.ee.ethz.ch/timofter/NTIRE19video/train_blur_comp_part1.zip), [part2](https://data.vision.ee.ethz.ch/timofter/NTIRE19video/train_blur_comp_part2.zip), [part3](https://data.vision.ee.ethz.ch/timofter/NTIRE19video/train_blur_comp_part3.zip) | [val_blur_comp](https://data.vision.ee.ethz.ch/timofter/NTIRE19video/val_blur_comp.zip) |[test_blur_comp](https://data.vision.ee.ethz.ch/timofter/NTIRE19video/test_blur_comp.zip) |
|
||
|
||
**Step 2**: Re-group the datasets<br/>
|
||
We rename the clips in the original validation set, starting from 240 ... It can be accomplished by `data_scripts/regroup_REDS.py`.
|
||
Note that the REDS4 will be excluded in the data loader, so there is no need to remove the REDS4 explicitly.
|
||
|
||
**Step 3**: Create LMDB files<br/>
|
||
Use the script `data_scripts/create_lmdb.py` to generate the lmdb files separately for GT and LR frames. You need to modify the configurations in the script:
|
||
1) For GT (train_sharp)
|
||
```
|
||
dataset = 'REDS'
|
||
mode = 'train_sharp'
|
||
```
|
||
2) For LR (train_sharp_bicubic)
|
||
```
|
||
dataset = 'REDS'
|
||
mode = 'train_sharp_bicubic'
|
||
```
|
||
**Step 4**: Test the dataloader with the script `data_scripts/test_dataloader.py`.
|
||
|
||
```
|
||
@InProceedings{nah2019reds,
|
||
author = {Nah, Seungjun and Baik, Sungyong and Hong, Seokil and Moon, Gyeongsik and Son, Sanghyun and Timofte, Radu and Lee, Kyoung Mu},
|
||
title = {NTIRE 2019 challenges on video deblurring and super-resolution: Dataset and study},
|
||
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)},
|
||
year = {2019}
|
||
}
|
||
```
|