168 lines
6.0 KiB
GLSL
168 lines
6.0 KiB
GLSL
#version 450
|
|
#pragma shader_stage(fragment)
|
|
|
|
//#extension GL_EXT_nonuniform_qualifier : enable
|
|
|
|
layout (constant_id = 0) const uint TEXTURES = 512;
|
|
layout (constant_id = 1) const uint CUBEMAPS = 128;
|
|
layout (constant_id = 2) const uint LAYERS = 32;
|
|
|
|
layout (binding = 5) uniform sampler2D samplerTextures[TEXTURES];
|
|
layout (binding = 6) uniform samplerCube samplerCubemaps[CUBEMAPS];
|
|
|
|
#define SHADOW_SAMPLES 16
|
|
#define FRAGMENT 1
|
|
#define BAKING 1
|
|
#define PBR 1
|
|
#define LAMBERT 0
|
|
|
|
#include "../../common/macros.h"
|
|
#include "../../common/structs.h"
|
|
|
|
layout (std140, binding = 7) readonly buffer Instances {
|
|
Instance instances[];
|
|
};
|
|
layout (std140, binding = 8) readonly buffer Materials {
|
|
Material materials[];
|
|
};
|
|
layout (std140, binding = 9) readonly buffer Textures {
|
|
Texture textures[];
|
|
};
|
|
layout (std140, binding = 10) readonly buffer Lights {
|
|
Light lights[];
|
|
};
|
|
|
|
layout (binding = 11, rgba8) uniform volatile coherent image3D outAlbedos;
|
|
|
|
#include "../../common/functions.h"
|
|
#include "../../common/shadows.h"
|
|
#if PBR
|
|
#include "../../common/pbr.h"
|
|
#endif
|
|
|
|
layout (location = 0) in vec2 inUv;
|
|
layout (location = 1) in vec2 inSt;
|
|
layout (location = 2) in vec4 inColor;
|
|
layout (location = 3) in vec3 inNormal;
|
|
layout (location = 4) in mat3 inTBN;
|
|
layout (location = 7) in vec3 inPosition;
|
|
layout (location = 8) flat in uvec4 inId;
|
|
layout (location = 9) flat in uint inLayer;
|
|
|
|
layout (location = 0) out vec4 outAlbedo;
|
|
|
|
void main() {
|
|
const uint drawID = uint(inId.x);
|
|
const uint instanceID = uint(inId.y);
|
|
const uint materialID = uint(inId.z);
|
|
|
|
vec4 A = vec4(1, 1, 1, 1);
|
|
surface.normal.world = normalize( inNormal );
|
|
surface.uv.xy = wrap(inUv.xy);
|
|
surface.uv.z = mipLevel(dFdx(inUv), dFdy(inUv));
|
|
surface.position.world = inPosition;
|
|
const Material material = materials[materialID];
|
|
|
|
surface.material.metallic = material.factorMetallic;
|
|
surface.material.roughness = material.factorRoughness;
|
|
surface.material.occlusion = 1.0f - material.factorOcclusion;
|
|
|
|
surface.light = material.colorEmissive;
|
|
surface.material.albedo = vec4(1);
|
|
#if 1
|
|
{
|
|
const vec3 F0 = mix(vec3(0.04), surface.material.albedo.rgb, surface.material.metallic);
|
|
for ( uint i = 0; i < lights.length(); ++i ) {
|
|
const Light light = lights[i];
|
|
const mat4 mat = light.view; // inverse(light.view);
|
|
const vec3 position = surface.position.world;
|
|
// const vec3 position = vec3( mat * vec4(surface.position.world, 1.0) );
|
|
const vec3 normal = surface.normal.world;
|
|
// const vec3 normal = vec3( mat * vec4(surface.normal.world, 0.0) );
|
|
|
|
if ( light.power <= LIGHT_POWER_CUTOFF ) continue;
|
|
const vec3 Lp = light.position;
|
|
const vec3 Liu = light.position - surface.position.world;
|
|
const float La = 1.0 / (PI * pow(length(Liu), 2.0));
|
|
const float Ls = shadowFactor( light, 0.0 );
|
|
if ( light.power * La * Ls <= LIGHT_POWER_CUTOFF ) continue;
|
|
|
|
const vec3 Lo = normalize( -position );
|
|
const float cosLo = max(0.0, dot(normal, Lo));
|
|
|
|
const vec3 Li = normalize(Liu);
|
|
const vec3 Lr = light.color.rgb * light.power * La * Ls;
|
|
// const float cosLi = max(0.0, dot(normal, Li));
|
|
const float cosLi = abs(dot(normal, Li));
|
|
#if LAMBERT
|
|
const vec3 diffuse = surface.material.albedo.rgb;
|
|
const vec3 specular = vec3(0);
|
|
#elif PBR
|
|
const vec3 Lh = normalize(Li + Lo);
|
|
// const float cosLh = max(0.0, dot(normal, Lh));
|
|
const float cosLh = abs(dot(normal, Lh));
|
|
|
|
const vec3 F = fresnelSchlick( F0, max( 0.0, dot(Lh, Lo) ) );
|
|
const float D = 1; // ndfGGX( cosLh, surface.material.roughness );
|
|
const float G = gaSchlickGGX(cosLi, cosLo, surface.material.roughness);
|
|
const vec3 diffuse = mix( vec3(1.0) - F, vec3(0.0), surface.material.metallic ) * surface.material.albedo.rgb;
|
|
const vec3 specular = (F * D * G) / max(EPSILON, 4.0 * cosLi * cosLo);
|
|
#endif
|
|
|
|
surface.light.rgb += (diffuse + specular) * Lr * cosLi;
|
|
surface.light.a += light.power * La * Ls;
|
|
}
|
|
}
|
|
#else
|
|
{
|
|
// corrections
|
|
surface.material.roughness *= 4.0;
|
|
const vec3 F0 = mix(vec3(0.04), surface.material.albedo.rgb, surface.material.metallic);
|
|
const vec3 Lo = normalize( surface.position.world );
|
|
const float cosLo = max(0.0, dot(surface.normal.world, Lo));
|
|
for ( uint i = 0; i < lights.length(); ++i ) {
|
|
const Light light = lights[i];
|
|
if ( light.power <= LIGHT_POWER_CUTOFF ) continue;
|
|
if ( light.type >= 0 && validTextureIndex( surface.instance.lightmapID ) ) continue;
|
|
const vec3 Lp = light.position;
|
|
const vec3 Liu = light.position - surface.position.world;
|
|
const vec3 Li = normalize(Liu);
|
|
const float Ls = shadowFactor( light, 0.0 );
|
|
const float La = 1.0 / (PI * pow(length(Liu), 2.0));
|
|
if ( light.power * La * Ls <= LIGHT_POWER_CUTOFF ) continue;
|
|
|
|
const float cosLi = max(0.0, dot(surface.normal.world, Li));
|
|
const vec3 Lr = light.color.rgb * light.power * La * Ls;
|
|
#if LAMBERT
|
|
const vec3 diffuse = surface.material.albedo.rgb;
|
|
const vec3 specular = vec3(0);
|
|
#elif PBR
|
|
const vec3 Lh = normalize(Li + Lo);
|
|
const float cosLh = max(0.0, dot(surface.normal.world, Lh));
|
|
|
|
const vec3 F = fresnelSchlick( F0, max( 0.0, dot(Lh, Lo) ) );
|
|
const float D = ndfGGX( cosLh, surface.material.roughness );
|
|
const float G = gaSchlickGGX(cosLi, cosLo, surface.material.roughness);
|
|
const vec3 diffuse = mix( vec3(1.0) - F, vec3(0.0), surface.material.metallic ) * surface.material.albedo.rgb;
|
|
const vec3 specular = (F * D * G) / max(EPSILON, 4.0 * cosLi * cosLo);
|
|
#endif
|
|
|
|
surface.light.rgb += (diffuse + specular) * Lr * cosLi;
|
|
surface.light.a += light.power * La * Ls;
|
|
}
|
|
}
|
|
#endif
|
|
#define EXPOSURE 0
|
|
#define GAMMA 0
|
|
|
|
// surface.light.rgb = vec3(1.0) - exp(-surface.light.rgb * EXPOSURE);
|
|
// surface.light.rgb = pow(surface.light.rgb, vec3(1.0 / GAMMA));
|
|
|
|
outAlbedo = vec4(surface.light.rgb, 1);
|
|
|
|
{
|
|
const vec2 st = inSt.xy * imageSize(outAlbedos).xy;
|
|
const ivec3 uvw = ivec3(int(st.x), int(st.y), int(inLayer));
|
|
imageStore(outAlbedos, uvw, vec4(surface.light.rgb, 1) );
|
|
}
|
|
} |