199 lines
6.7 KiB
C
199 lines
6.7 KiB
C
// Helper Functions
|
|
float random(vec3 seed, int i){ return fract(sin(dot(vec4(seed,i), vec4(12.9898,78.233,45.164,94.673))) * 43758.5453); }
|
|
float rand2(vec2 co){ return fract(sin(dot(co.xy ,vec2(12.9898,78.233))) * 143758.5453); }
|
|
float rand3(vec3 co){ return fract(sin(dot(co.xyz ,vec3(12.9898,78.233, 37.719))) * 143758.5453); }
|
|
//
|
|
uint tea(uint val0, uint val1) {
|
|
uint v0 = val0;
|
|
uint v1 = val1;
|
|
uint s0 = 0;
|
|
|
|
for(uint n = 0; n < 16; n++) {
|
|
s0 += 0x9e3779b9;
|
|
v0 += ((v1 << 4) + 0xa341316c) ^ (v1 + s0) ^ ((v1 >> 5) + 0xc8013ea4);
|
|
v1 += ((v0 << 4) + 0xad90777d) ^ (v0 + s0) ^ ((v0 >> 5) + 0x7e95761e);
|
|
}
|
|
return v0;
|
|
}
|
|
uint lcg(inout uint prev) {
|
|
uint LCG_A = 1664525u;
|
|
uint LCG_C = 1013904223u;
|
|
prev = (LCG_A * prev + LCG_C);
|
|
return prev & 0x00FFFFFF;
|
|
}
|
|
float rnd(inout uint prev) { return (float(lcg(prev)) / float(0x01000000)); }
|
|
|
|
uint prngSeed;
|
|
float rnd() { return rnd(prngSeed); }
|
|
//
|
|
void tangentBitangent(in vec3 N, out vec3 Nt, out vec3 Nb) {
|
|
if(abs(N.x) > abs(N.y)) Nt = vec3(N.z, 0, -N.x) / sqrt(N.x * N.x + N.z * N.z);
|
|
else Nt = vec3(0, -N.z, N.y) / sqrt(N.y * N.y + N.z * N.z);
|
|
Nb = cross(N, Nt);
|
|
}
|
|
vec3 samplingHemisphere(inout uint seed, in vec3 x, in vec3 y, in vec3 z) {
|
|
float r1 = rnd(seed);
|
|
float r2 = rnd(seed);
|
|
float sq = sqrt(1.0 - r2);
|
|
vec3 direction = vec3(cos(2 * PI * r1) * sq, sin(2 * PI * r1) * sq, sqrt(r2));
|
|
direction = direction.x * x + direction.y * y + direction.z * z;
|
|
return direction;
|
|
}
|
|
vec3 samplingHemisphere(inout uint seed, in vec3 z) {
|
|
vec3 x;
|
|
vec3 y;
|
|
tangentBitangent( z, x, y );
|
|
|
|
float r1 = rnd(seed);
|
|
float r2 = rnd(seed);
|
|
float sq = sqrt(1.0 - r2);
|
|
vec3 direction = vec3(cos(2 * PI * r1) * sq, sin(2 * PI * r1) * sq, sqrt(r2));
|
|
direction = direction.x * x + direction.y * y + direction.z * z;
|
|
return direction;
|
|
}
|
|
//
|
|
#if BUFFER_REFERENCE
|
|
|
|
uint64_t uvec2uint64( uvec2 src ) {
|
|
uint64_t dst;
|
|
dst = (src.x << 32) | src.y;
|
|
return dst;
|
|
}
|
|
|
|
#endif
|
|
//
|
|
float max3( vec3 v ) { return max(max(v.x, v.y), v.z); }
|
|
float min3( vec3 v ) { return min(min(v.x, v.y), v.z); }
|
|
uint biasedRound( float x, float bias ) { return uint( ( x < bias ) ? floor(x) : ceil(x)); }
|
|
float wrap( float i ) { return fract(i); }
|
|
vec2 wrap( vec2 uv ) { return vec2( wrap( uv.x ), wrap( uv.y ) ); }
|
|
vec3 orthogonal(vec3 u){
|
|
u = normalize(u);
|
|
const vec3 v = vec3(0.99146, 0.11664, 0.05832); // Pick any normalized vector.
|
|
return abs(dot(u, v)) > 0.99999f ? cross(u, vec3(0, 1, 0)) : cross(u, v);
|
|
}
|
|
vec4 blend( vec4 source, vec4 dest, float a ) {
|
|
return source * a + dest * (1.0 - a);
|
|
}
|
|
float gauss( float x, float sigma ) {
|
|
return (1.0 / (2.0 * 3.14157 * sigma) * exp(-(x*x) / (2.0 * sigma)));
|
|
}
|
|
bool enabled( uint flag, uint bit ) {
|
|
return (flag & (1 << bit)) != 0;
|
|
}
|
|
vec3 decodeNormals( vec2 enc ) {
|
|
const vec2 ang = enc*2-1;
|
|
const vec2 scth = vec2( sin(ang.x * PI), cos(ang.x * PI) );
|
|
const vec2 scphi = vec2(sqrt(1.0 - ang.y*ang.y), ang.y);
|
|
return normalize( vec3(scth.y*scphi.x, scth.x*scphi.x, scphi.y) );
|
|
}
|
|
vec2 encodeNormals( vec3 n ) {
|
|
// float p = sqrt(n.z*8+8);
|
|
// return n.xy/p + 0.5;
|
|
return (vec2(atan(n.y,n.x)/PI, n.z)+1.0)*0.5;
|
|
}
|
|
vec3 encodeSrgb(vec3 rgb) {
|
|
const vec3 a = 12.92 * rgb;
|
|
const vec3 b = 1.055 * pow(rgb, vec3(1.0 / 2.4)) - 0.055;
|
|
const vec3 c = step(vec3(0.0031308), rgb);
|
|
return mix(a, b, c);
|
|
}
|
|
|
|
vec3 decodeSrgb(vec3 rgb) {
|
|
const vec3 a = rgb / 12.92;
|
|
const vec3 b = pow((rgb + 0.055) / 1.055, vec3(2.4));
|
|
const vec3 c = step(vec3(0.04045), rgb);
|
|
return mix(a, b, c);
|
|
}
|
|
bool validTextureIndex( int textureIndex ) {
|
|
return 0 <= textureIndex && textureIndex < MAX_TEXTURES;
|
|
}
|
|
bool validCubemapIndex( int textureIndex ) {
|
|
return 0 <= textureIndex && textureIndex < CUBEMAPS;
|
|
}
|
|
#if !BLOOM && (DEFERRED || FRAGMENT || COMPUTE)
|
|
|
|
#if !NO_NONUNIFORM_EXT
|
|
#extension GL_EXT_nonuniform_qualifier : enable
|
|
#endif
|
|
|
|
bool validTextureIndex( uint id ) {
|
|
return 0 <= id && id < MAX_TEXTURES;
|
|
}
|
|
bool validTextureIndex( uint start, int offset ) {
|
|
return 0 <= offset && start + offset < MAX_TEXTURES;
|
|
}
|
|
uint textureIndex( uint start, int offset ) {
|
|
return start + offset;
|
|
}
|
|
vec4 sampleTexture( uint id, vec2 uv ) {
|
|
const Texture t = textures[id];
|
|
return texture( samplerTextures[nonuniformEXT(t.index)], mix( t.lerp.xy, t.lerp.zw, uv ) );
|
|
}
|
|
vec4 sampleTexture( uint id, vec2 uv, float mip ) {
|
|
#if QUERY_MIPMAP
|
|
return sampleTexture( id, uv );
|
|
#else
|
|
const Texture t = textures[id];
|
|
return textureLod( samplerTextures[nonuniformEXT(t.index)], mix( t.lerp.xy, t.lerp.zw, uv ), mip );
|
|
#endif
|
|
}
|
|
vec4 sampleTexture( uint id, vec3 uvm ) { return sampleTexture( id, uvm.xy, uvm.z ); }
|
|
vec4 sampleTexture( uint id ) { return sampleTexture( id, surface.uv.xy, surface.uv.z ); }
|
|
vec4 sampleTexture( uint id, float mip ) { return sampleTexture( id, surface.uv.xy, mip ); }
|
|
#endif
|
|
vec2 rayBoxDst( vec3 boundsMin, vec3 boundsMax, in Ray ray ) {
|
|
const vec3 t0 = (boundsMin - ray.origin) / ray.direction;
|
|
const vec3 t1 = (boundsMax - ray.origin) / ray.direction;
|
|
const vec3 tmin = min(t0, t1);
|
|
const vec3 tmax = max(t0, t1);
|
|
const float tStart = max(0, max( max(tmin.x, tmin.y), tmin.z ));
|
|
const float tEnd = max(0, min( tmax.x, min(tmax.y, tmax.z) ) - tStart);
|
|
return vec2(tStart, tEnd);
|
|
}
|
|
#if VXGI
|
|
float cascadePower( uint x ) {
|
|
return pow(1 + x, ubo.vxgi.cascadePower);
|
|
// return max( 1, x * ubo.vxgi.cascadePower );
|
|
}
|
|
#endif
|
|
#if !COMPUTE
|
|
void whitenoise(inout vec3 color, const vec4 parameters) {
|
|
const float flicker = parameters.x;
|
|
const float pieces = parameters.y;
|
|
const float blend = parameters.z;
|
|
const float time = parameters.w;
|
|
if ( blend < 0.0001 ) return;
|
|
const float freq = sin(pow(mod(time, flicker) + flicker, 1.9));
|
|
const float whiteNoise = rand2( floor(gl_FragCoord.xy / pieces) + mod(time, freq) );
|
|
color = mix( color, vec3(whiteNoise), blend );
|
|
}
|
|
float mipLevel( in vec2 dx_vtc, in vec2 dy_vtc ) {
|
|
const float delta_max_sqr = max(dot(dx_vtc, dx_vtc), dot(dy_vtc, dy_vtc));
|
|
return 0.5 * log2(delta_max_sqr);
|
|
// return max(0.0, 0.5 * log2(delta_max_sqr) - 1.0);
|
|
|
|
// return 0.5 * log2(max(dot(dx_vtc, dx_vtc), dot(dy_vtc, dy_vtc)));
|
|
}
|
|
vec4 resolve( subpassInputMS t, const uint samples ) {
|
|
vec4 resolved = vec4(0);
|
|
for ( int i = 0; i < samples; ++i ) resolved += subpassLoad(t, i);
|
|
resolved /= vec4(samples);
|
|
return resolved;
|
|
}
|
|
uvec4 resolve( usubpassInputMS t, const uint samples ) {
|
|
uvec4 resolved = uvec4(0);
|
|
for ( int i = 0; i < samples; ++i ) resolved += subpassLoad(t, i);
|
|
resolved /= uvec4(samples);
|
|
return resolved;
|
|
}
|
|
#endif
|
|
vec4 resolve( sampler2DMS t, ivec2 uv ) {
|
|
vec4 resolved = vec4(0);
|
|
int samples = textureSamples(t);
|
|
for ( int i = 0; i < samples; ++i ) {
|
|
resolved += texelFetch(t, uv, i);
|
|
}
|
|
resolved /= float(samples);
|
|
return resolved;
|
|
} |