engine/ext/behaviors/scene/behavior.cpp

929 lines
39 KiB
C++

#include "behavior.h"
#include <uf/utils/time/time.h>
#include <uf/utils/io/iostream.h>
#include <uf/utils/math/vector.h>
#include <uf/utils/math/transform.h>
#include <uf/utils/window/window.h>
#include <uf/utils/graphic/graphic.h>
#include <uf/utils/audio/audio.h>
#include <uf/utils/thread/thread.h>
#include <uf/utils/camera/camera.h>
#include <uf/utils/math/physics.h>
#include <uf/engine/asset/asset.h>
#include <uf/engine/asset/masterdata.h>
#include <uf/utils/io/inputs.h>
#include <uf/utils/renderer/renderer.h>
#include <uf/utils/noise/noise.h>
#include <uf/ext/gltf/gltf.h>
#include <uf/utils/math/collision.h>
#include <uf/utils/window/payloads.h>
#include <uf/ext/ext.h>
#include "../light/behavior.h"
#include "../voxelizer/behavior.h"
#include "../../ext.h"
#include "../../gui/gui.h"
UF_BEHAVIOR_REGISTER_CPP(ext::ExtSceneBehavior)
UF_BEHAVIOR_TRAITS_CPP(ext::ExtSceneBehavior, ticks = true, renders = false, multithread = false)
#define this ((uf::Scene*) &self)
void ext::ExtSceneBehavior::initialize( uf::Object& self ) {
auto& assetLoader = this->getComponent<uf::Asset>();
auto& metadata = this->getComponent<ext::ExtSceneBehavior::Metadata>();
auto& metadataJson = this->getComponent<uf::Serializer>();
this->addHook( "system:Quit.%UID%", [&](ext::json::Value& payload){
ext::ready = false;
});
this->addHook( "asset:Load.%UID%", [&](pod::payloads::assetLoad& payload){
if ( !uf::Asset::isExpected( payload, uf::Asset::Type::AUDIO ) ) return;
if ( !assetLoader.has<uf::Audio>(payload.filename) ) return;
auto& asset = assetLoader.get<uf::Audio>(payload.filename);
auto& audio = this->getComponent<uf::Audio>();
audio.destroy();
audio = std::move(asset);
assetLoader.remove<uf::Audio>(payload.filename);
#if UF_AUDIO_MAPPED_VOLUMES
audio.setVolume(uf::audio::volumes.count("bgm") > 0 ? uf::audio::volumes.at("bgm") : 1.0);
#else
audio.setVolume(uf::audio::volumes::bgm);
#endif
audio.loop( true );
audio.play();
});
this->addHook( "menu:Open", [&](pod::payloads::menuOpen& payload){
TIMER(1, true && ) {
uf::Object* manager = (uf::Object*) this->globalFindByName("Gui Manager");
if ( !manager ) return;
uf::stl::string key = payload.name;
uf::Object& gui = manager->loadChild(metadataJson["menus"][key].as<uf::stl::string>("/entites/gui/"+key+"/menu.json"), false);
uf::Serializer& metadataJson = gui.getComponent<uf::Serializer>();
gui.initialize();
};
/*
static uf::Timer<long long> timer(false);
if ( !timer.running() ) timer.start( uf::Time<>(-1000000) );
if ( timer.elapsed().asDouble() < 1 ) return;
timer.reset();
uf::Object* manager = (uf::Object*) this->globalFindByName("Gui Manager");
if ( !manager ) return;
ext::json::Value payload;
uf::stl::string config = metadataJson["menus"]["pause"].as<uf::stl::string>("/entites/gui/pause/menu.json");
uf::Object& gui = manager->loadChild(config, false);
payload["uid"] = gui.getUid();
uf::Serializer& metadataJson = gui.getComponent<uf::Serializer>();
metadataJson["menu"] = payload.menu;
gui.initialize();
*/
});
this->addHook( "world:Entity.LoadAsset", [&](pod::payloads::assetLoad& payload){
assetLoader.load("asset:Load." + std::to_string(payload.uid), payload);
});
this->addHook( "shader:Update.%UID%", [&](ext::json::Value& json){
metadata.shader.mode = json["mode"].as<uint32_t>();
metadata.shader.scalar = json["scalar"].as<uint32_t>();
metadata.shader.parameters = uf::vector::decode( json["parameters"], metadata.shader.parameters );
ext::json::forEach( metadataJson["system"]["renderer"]["shader"]["parameters"], [&]( uint32_t i, const ext::json::Value& value ){
if ( value.as<uf::stl::string>() == "time" ) metadata.shader.time = i;
});
if ( 0 <= metadata.shader.time && metadata.shader.time < 4 ) {
metadata.shader.parameters[metadata.shader.time] = uf::physics::time::current;
}
});
/* store viewport size */
this->addHook( "window:Resized", [&](pod::payloads::windowResized& payload){
ext::gui::size.current = payload.window.size;
});
this->addHook( "object:Serialize.%UID%", [&](ext::json::Value& json){ metadata.serialize(self, metadataJson); });
this->addHook( "object:Deserialize.%UID%", [&](ext::json::Value& json){ metadata.deserialize(self, metadataJson); });
metadata.deserialize(self, metadataJson);
// lock control
{
pod::payloads::windowMouseCursorVisibility payload;
payload.mouse.visible = false;
uf::hooks.call("window:Mouse.CursorVisibility", payload);
uf::hooks.call("window:Mouse.Lock");
}
auto& sceneTextures = this->getComponent<pod::SceneTextures>();
// initialize perlin noise
#if UF_USE_VULKAN
{
auto& texture = sceneTextures.noise; //this->getComponent<uf::renderer::Texture3D>();
texture.sampler.descriptor.addressMode = {
uf::renderer::enums::AddressMode::MIRRORED_REPEAT,
uf::renderer::enums::AddressMode::MIRRORED_REPEAT,
uf::renderer::enums::AddressMode::MIRRORED_REPEAT
};
auto& noiseGenerator = this->getComponent<uf::PerlinNoise>();
noiseGenerator.seed(rand());
float high = std::numeric_limits<float>::min();
float low = std::numeric_limits<float>::max();
float amplitude = metadataJson["noise"]["amplitude"].is<float>() ? metadataJson["noise"]["amplitude"].as<float>() : 1.5;
pod::Vector3ui size = uf::vector::decode(metadataJson["noise"]["size"], pod::Vector3ui{64, 64, 64});
pod::Vector3d coefficients = uf::vector::decode(metadataJson["noise"]["coefficients"], pod::Vector3d{3.0, 3.0, 3.0});
uf::stl::vector<uint8_t> pixels(size.x * size.y * size.z);
uf::stl::vector<float> perlins(size.x * size.y * size.z);
#pragma omp parallel for
for ( uint32_t z = 0; z < size.z; ++z ) {
for ( uint32_t y = 0; y < size.y; ++y ) {
for ( uint32_t x = 0; x < size.x; ++x ) {
float nx = (float) x / (float) size.x;
float ny = (float) y / (float) size.y;
float nz = (float) z / (float) size.z;
float n = amplitude * noiseGenerator.noise(coefficients.x * nx, coefficients.y * ny, coefficients.z * nz);
high = std::max( high, n );
low = std::min( low, n );
perlins[x + y * size.x + z * size.x * size.y] = n;
}
}
}
for ( uint32_t i = 0; i < perlins.size(); ++i ) {
float n = perlins[i];
n = n - floor(n);
float normalized = (n - low) / (high - low);
if ( normalized >= 1.0f ) normalized = 1.0f;
pixels[i] = static_cast<uint8_t>(floor(normalized * 255));
}
texture.fromBuffers( (void*) pixels.data(), pixels.size(), uf::renderer::enums::Format::R8_UNORM, size.x, size.y, size.z, 1 );
}
// initialize cubemap
{
const uf::stl::vector<uf::stl::string> filenames = {
"front",
"back",
"up",
"down",
"right",
"left",
};
uf::Image::container_t pixels;
uf::stl::vector<uf::Image> images(filenames.size());
pod::Vector2ui size = {0,0};
auto& texture = sceneTextures.skybox;
for ( uint32_t i = 0; i < filenames.size(); ++i ) {
auto filename = uf::string::replace( this->resolveURI(metadata.sky.box.filename), "%d", filenames[i] );
auto& image = images[i];
image.open(filename);
image.flip();
if ( size.x == 0 && size.y == 0 ) size = image.getDimensions();
else if ( size != image.getDimensions() ) UF_EXCEPTION("ERROR: MISMATCH CUBEMAP FACE SIZE");
auto& p = image.getPixels();
pixels.reserve( pixels.size() + p.size() );
pixels.insert( pixels.end(), p.begin(), p.end() );
}
// texture.mips = 0;
if ( size.x > 0 && size.y > 0 ) {
texture.fromBuffers( (void*) pixels.data(), pixels.size(), uf::renderer::enums::Format::R8G8B8A8_UNORM, size.x, size.y, 1, filenames.size() );
}
}
#endif
}
void ext::ExtSceneBehavior::tick( uf::Object& self ) {
auto& assetLoader = this->getComponent<uf::Asset>();
assetLoader.processQueue();
auto& metadata = this->getComponent<ext::ExtSceneBehavior::Metadata>();
auto& metadataJson = this->getComponent<uf::Serializer>();
#if 1
uf::hooks.call("game:Frame.Start");
++metadata.shader.frameAccumulate;
if ( !metadata.shader.frameAccumulateReset && metadata.shader.frameAccumulateLimit && metadata.shader.frameAccumulate > metadata.shader.frameAccumulateLimit ) {
metadata.shader.frameAccumulateReset = true;
}
if ( metadata.shader.frameAccumulateReset ) {
metadata.shader.frameAccumulate = 0;
metadata.shader.frameAccumulateReset = false;
}
/* Print World Tree */ {
TIMER(1, uf::inputs::kbm::states::U && ) {
std::function<void(uf::Entity*, int)> filter = []( uf::Entity* entity, int indent ) {
for ( int i = 0; i < indent; ++i ) uf::iostream << "\t";
uf::iostream << uf::string::toString(entity->as<uf::Object>()) << " ";
if ( entity->hasComponent<pod::Transform<>>() ) {
pod::Transform<> t = uf::transform::flatten(entity->getComponent<pod::Transform<>>());
uf::iostream << uf::string::toString(t.position) << " " << uf::string::toString(t.orientation);
}
uf::iostream << "\n";
};
for ( uf::Scene* scene : uf::scene::scenes ) {
if ( !scene ) continue;
uf::iostream << "Scene: " << scene->getName() << ": " << scene << "\n";
scene->process(filter, 1);
}
}
}
/* Mark as ready for multithreading */ {
TIMER(1, uf::inputs::kbm::states::M && ) {
uf::renderer::settings::experimental::dedicatedThread = !uf::renderer::settings::experimental::dedicatedThread;
UF_MSG_DEBUG("Toggling multithreaded rendering...");
}
}
#endif
#if 0
/* Print World Tree */ {
TIMER(1, uf::inputs::kbm::states::U && false && ) {
std::function<void(uf::Entity*, int)> filter = []( uf::Entity* entity, int indent ) {
for ( int i = 0; i < indent; ++i ) uf::iostream << "\t";
uf::iostream << uf::string::toString(entity->as<uf::Object>()) << " [";
for ( auto& behavior : entity->getBehaviors() ) {
uf::iostream << uf::instantiator::behaviors->names[behavior.type] << ", ";
}
uf::iostream << "]\n";
};
for ( uf::Scene* scene : uf::scene::scenes ) {
if ( !scene ) continue;
uf::iostream << "Scene: " << scene->getName() << ": " << scene << "\n";
scene->process(filter, 1);
}
uf::Serializer instantiator;
{
int i = 0;
for ( auto& pair : uf::instantiator::objects->names ) {
instantiator["objects"][i++] = pair.second;
}
}
{
int i = 0;
for ( auto& pair : uf::instantiator::behaviors->names ) {
instantiator["behaviors"][i++] = pair.second;
}
}
uf::iostream << instantiator << "\n";
}
}
#endif
#if UF_USE_OPENAL
/* check if audio needs to loop */ {
auto& audio = this->getComponent<uf::Audio>();
if ( !audio.playing() ) audio.play();
}
/* Updates Sound Listener */ {
auto& controller = this->getController();
// copy
pod::Transform<> transform = controller.getComponent<pod::Transform<>>();
if ( controller.hasComponent<uf::Camera>() ) {
auto& camera = controller.getComponent<uf::Camera>();
transform.position += camera.getTransform().position;
transform = uf::transform::reorient( transform );
}
transform.forward *= -1;
ext::al::listener( transform );
}
#if 0
/* check if audio needs to loop */ {
auto& bgm = this->getComponent<uf::Audio>();
float current = bgm.getTime();
float end = bgm.getDuration();
float epsilon = 0.005f;
if ( (current + epsilon >= end || !bgm.playing()) && !bgm.loops() ) {
// intro to main transition
uf::stl::string filename = bgm.getFilename();
filename = assetLoader.getOriginal(filename);
if ( filename.find("_intro") != uf::stl::string::npos ) {
assetLoader.load(uf::string::replace( filename, "_intro", "" ), this->formatHookName("asset:Load.%UID%"));
// loop
} else {
bgm.setTime(0);
if ( !bgm.playing() ) bgm.play();
}
}
}
#endif
#endif
#if !UF_ENV_DREAMCAST
/* Regain control if nothing requests it */ {
pod::payloads::windowMouseCursorVisibility payload;
payload.mouse.visible = this->globalFindByName("Gui: Menu");
if ( !payload.mouse.visible ) uf::hooks.call("window:Mouse.Lock");
uf::hooks.call("window:Mouse.CursorVisibility", payload);
}
#endif
#if UF_ENTITY_METADATA_USE_JSON
metadata.deserialize(self, metadataJson);
#else
if ( 0 <= metadata.shader.time && metadata.shader.time < 4 ) {
metadata.shader.parameters[metadata.shader.time] = uf::physics::time::current;
}
#endif
#if UF_USE_OPENGL
if ( metadata.light.enabled ) {
auto& graph = this->getGraph();
auto& controller = this->getController();
auto& camera = controller.getComponent<uf::Camera>();
auto& controllerMetadata = controller.getComponent<uf::Serializer>();
auto& controllerTransform = controller.getComponent<pod::Transform<>>();
auto& metadata = this->getComponent<ext::ExtSceneBehavior::Metadata>();
auto& metadataVxgi = this->getComponent<ext::VoxelizerSceneBehavior::Metadata>();
auto& metadataJson = this->getComponent<uf::Serializer>();
struct LightInfo {
uf::Entity* entity = NULL;
pod::Vector4f position = {0,0,0,1}; // OpenGL requires a W
pod::Vector4f color = {0,0,0,1}; // OpenGL requires an alpha
float distance = 0;
float power = 0;
};
uf::stl::vector<LightInfo> entities;
for ( auto entity : graph ) {
if ( entity == this || entity == &controller || !entity->hasComponent<ext::LightBehavior::Metadata>() ) continue;
auto& metadata = entity->getComponent<ext::LightBehavior::Metadata>();
if ( metadata.power <= 0 ) continue;
auto flatten = uf::transform::flatten( entity->getComponent<pod::Transform<>>() );
LightInfo& info = entities.emplace_back(LightInfo{
.entity = entity,
.position = flatten.position,
.color = metadata.color,
.distance = uf::vector::magnitude( uf::vector::subtract( flatten.position, controllerTransform.position ) ),
.power = metadata.power,
});
info.position.w = 1;
info.color.w = 1;
}
std::sort( entities.begin(), entities.end(), [&]( LightInfo& l, LightInfo& r ){
return l.distance < r.distance;
});
static GLint glMaxLights = 0;
if ( !glMaxLights ) glGetIntegerv(GL_MAX_LIGHTS, &glMaxLights);
metadata.light.max = std::min( (uint32_t) glMaxLights, metadata.light.max );
// add lighting
{
uint32_t i = 0;
for ( ; i < entities.size() && i < metadata.light.max; ++i ) {
auto& info = entities[i];
// uf::Entity* entity = info.entity;
GLenum target = GL_LIGHT0+i;
GL_ERROR_CHECK(glEnable(target));
GL_ERROR_CHECK(glLightfv(target, GL_AMBIENT, &metadata.light.ambient[0]));
GL_ERROR_CHECK(glLightfv(target, GL_SPECULAR, &metadata.light.specular[0]));
GL_ERROR_CHECK(glLightfv(target, GL_DIFFUSE, &info.color[0]));
GL_ERROR_CHECK(glLightfv(target, GL_POSITION, &info.position[0]));
GL_ERROR_CHECK(glLightf(target, GL_CONSTANT_ATTENUATION, 0.0f));
GL_ERROR_CHECK(glLightf(target, GL_LINEAR_ATTENUATION, 0));
GL_ERROR_CHECK(glLightf(target, GL_QUADRATIC_ATTENUATION, 1.0f / info.power));
// UF_MSG_DEBUG( i << " | " << uf::vector::toString( metadata.light.ambient ) << " | " << uf::vector::toString( metadata.light.specular ) << " | " << uf::vector::toString( info.color ) << " | " << uf::vector::toString( info.position ) << " | " << info.power );
}
for ( ; i < metadata.light.max; ++i ) GL_ERROR_CHECK(glDisable(GL_LIGHT0+i));
}
}
#elif UF_USE_VULKAN
{
auto& graph = this->getGraph();
auto& controller = this->getController();
auto& camera = controller.getComponent<uf::Camera>();
auto& controllerMetadata = controller.getComponent<uf::Serializer>();
auto& controllerTransform = controller.getComponent<pod::Transform<>>();
auto& metadata = this->getComponent<ext::ExtSceneBehavior::Metadata>();
auto& metadataVxgi = this->getComponent<ext::VoxelizerSceneBehavior::Metadata>();
auto& metadataJson = this->getComponent<uf::Serializer>();
struct LightInfo {
uf::Entity* entity = NULL;
pod::Vector3f position = {0,0,0};
float range = 0.0f;
pod::Vector3f color = {0,0,0};
float intensity = 0.0f;
float distance = 0;
float bias = 0;
int32_t type = 0;
bool shadows = false;
};
uf::stl::vector<LightInfo> entities; entities.reserve(graph.size() / 2);
uf::graph::storage.lights.clear(); uf::graph::storage.lights.reserve(metadata.light.max);
uf::graph::storage.shadow2Ds.clear(); uf::graph::storage.shadow2Ds.reserve(metadata.light.max);
uf::graph::storage.shadowCubes.clear(); uf::graph::storage.shadowCubes.reserve(metadata.light.max);
// traverse scene graph
for ( auto entity : graph ) {
// ignore this scene, our controller, and anything that isn't actually a light
if ( entity == this || entity == &controller || !entity->hasComponent<ext::LightBehavior::Metadata>() ) continue;
auto& metadata = entity->getComponent<ext::LightBehavior::Metadata>();
// disables shadow mappers that activate when in range
bool hasRT = entity->hasComponent<uf::renderer::RenderTargetRenderMode>();
if ( hasRT ) {
auto& renderMode = entity->getComponent<uf::renderer::RenderTargetRenderMode>();
if ( metadata.renderer.mode == "in-range" ) {
renderMode.execute = false;
renderMode.metadata.limiter.execute = false;
}
}
if ( metadata.power <= 0 ) continue;
auto flatten = uf::transform::flatten( entity->getComponent<pod::Transform<>>() );
LightInfo& info = entities.emplace_back(LightInfo{
.entity = entity,
.position = flatten.position,
.range = 0,
.color = pod::Vector4f{ metadata.color.x, metadata.color.y, metadata.color.z },
.intensity = metadata.power,
.distance = uf::vector::magnitude( uf::vector::subtract( flatten.position, controllerTransform.position ) ),
.bias = metadata.bias,
.type = metadata.type,
.shadows = metadata.shadows && hasRT,
});
}
// prioritize closer lights; it would be nice to also prioritize lights in view, but because of VXGI it's not really something to do
std::sort( entities.begin(), entities.end(), [&]( LightInfo& l, LightInfo& r ){
return l.distance < r.distance;
});
int32_t shadowUpdateThreshold = metadata.shadow.update; // how many shadow maps we should update, based on range
int32_t shadowCount = metadata.shadow.max; // how many shadow maps we should pass, based on range
if ( shadowCount <= 0 ) shadowCount = std::numeric_limits<int32_t>::max();
// disable shadows if that light is outside our threshold
for ( auto& info : entities ) if ( info.shadows && shadowCount-- <= 0 ) info.shadows = false;
// bind lighting and requested shadow maps
for ( uint32_t i = 0; i < entities.size() && uf::graph::storage.lights.size() < metadata.light.max; ++i ) {
auto& info = entities[i];
uf::Entity* entity = info.entity;
if ( !info.shadows ) {
uf::graph::storage.lights.emplace_back(pod::Light{
.view = uf::matrix::identity(),
.projection = uf::matrix::identity(),
.position = info.position,
.range = info.range,
.color = info.color,
.intensity = info.intensity,
.type = info.type,
.typeMap = 0,
.indexMap = -1,
.depthBias = info.bias,
});
} else {
auto& renderMode = entity->getComponent<uf::renderer::RenderTargetRenderMode>();
auto& lightCamera = entity->getComponent<uf::Camera>();
auto& lightMetadata = entity->getComponent<ext::LightBehavior::Metadata>();
lightMetadata.renderer.rendered = true;
// activate our shadow mapper if it's range-basedd
if ( lightMetadata.renderer.mode == "in-range" && shadowUpdateThreshold-- > 0 ) {
renderMode.execute = true;
renderMode.metadata.limiter.execute = true;
}
constexpr uint32_t MODE_SPLIT = 0;
constexpr uint32_t MODE_CUBEMAP = 1;
constexpr uint32_t MODE_SEPARATE_2DS = 2;
// if point light, and combining is requested
if ( metadata.shadow.typeMap > MODE_SPLIT && renderMode.renderTarget.views == 6 ) {
int32_t index = -1;
// separated texture2Ds
if ( metadata.shadow.typeMap == MODE_SEPARATE_2DS ) {
index = uf::graph::storage.shadow2Ds.size();
for ( auto& attachment : renderMode.renderTarget.attachments ) {
if ( !(attachment.descriptor.usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ) continue;
for ( size_t view = 0; view < renderMode.renderTarget.views; ++view ) {
uf::graph::storage.shadow2Ds.emplace_back().aliasAttachment(attachment, view);
}
break;
}
// cubemapped
} else if ( metadata.shadow.typeMap == MODE_CUBEMAP ) {
index = uf::graph::storage.shadowCubes.size();
for ( auto& attachment : renderMode.renderTarget.attachments ) {
if ( !(attachment.descriptor.usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ) continue;
uf::graph::storage.shadowCubes.emplace_back().aliasAttachment(attachment);
break;
}
}
uf::graph::storage.lights.emplace_back(pod::Light{
.view = lightCamera.getView(0),
.projection = lightCamera.getProjection(0),
.position = info.position,
.range = info.range,
.color = info.color,
.intensity = info.intensity,
.type = info.type,
.typeMap = metadata.shadow.typeMap,
.indexMap = index,
.depthBias = info.bias,
});
// any other shadowing light, even point lights, are split by shadow maps
} else {
for ( auto& attachment : renderMode.renderTarget.attachments ) {
if ( !(attachment.descriptor.usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ) continue;
if ( attachment.descriptor.layout == VK_IMAGE_LAYOUT_PRESENT_SRC_KHR ) continue;
for ( size_t view = 0; view < renderMode.renderTarget.views; ++view ) {
uf::graph::storage.lights.emplace_back(pod::Light{
.view = lightCamera.getView(view),
.projection = lightCamera.getProjection(view),
.position = info.position,
.range = info.range,
.color = info.color,
.intensity = info.intensity,
.type = info.type,
.typeMap = 0,
.indexMap = uf::graph::storage.shadow2Ds.size(),
.depthBias = info.bias,
});
uf::graph::storage.shadow2Ds.emplace_back().aliasAttachment(attachment, view);
}
}
}
}
}
uf::graph::storage.buffers.light.update( (const void*) uf::graph::storage.lights.data(), uf::graph::storage.lights.size() * sizeof(pod::Light) );
}
#endif
/* Update lights */ if ( !uf::renderer::settings::pipelines::vxgi ) {
ext::ExtSceneBehavior::bindBuffers( *this );
}
}
void ext::ExtSceneBehavior::render( uf::Object& self ) {}
void ext::ExtSceneBehavior::destroy( uf::Object& self ) {
if ( this->hasComponent<pod::SceneTextures>() ) {
auto& sceneTextures = this->getComponent<pod::SceneTextures>();
for ( auto& t : sceneTextures.voxels.id ) t.destroy();
sceneTextures.voxels.id.clear();
for ( auto& t : sceneTextures.voxels.normal ) t.destroy();
sceneTextures.voxels.normal.clear();
for ( auto& t : sceneTextures.voxels.uv ) t.destroy();
sceneTextures.voxels.uv.clear();
for ( auto& t : sceneTextures.voxels.radiance ) t.destroy();
sceneTextures.voxels.radiance.clear();
for ( auto& t : sceneTextures.voxels.depth ) t.destroy();
sceneTextures.voxels.depth.clear();
sceneTextures.noise.destroy();
sceneTextures.skybox.destroy();
}
}
void ext::ExtSceneBehavior::Metadata::serialize( uf::Object& self, uf::Serializer& serializer ) {
serializer["light"]["should"] = /*this->*/light.enabled;
serializer["light"]["ambient"] = uf::vector::encode( /*this->*/light.ambient );
serializer["light"]["specular"] = uf::vector::encode( /*this->*/light.specular );
serializer["light"]["exposure"] = /*this->*/light.exposure;
serializer["light"]["gamma"] = /*this->*/light.gamma;
serializer["light"]["brightnessThreshold"] = /*this->*/light.brightnessThreshold;
serializer["light"]["useLightmaps"] = /*this->*/light.useLightmaps;
serializer["light"]["fog"]["color"] = uf::vector::encode( /*this->*/fog.color );
serializer["light"]["fog"]["step scale"] = /*this->*/fog.stepScale;
serializer["light"]["fog"]["absorbtion"] = /*this->*/fog.absorbtion;
serializer["light"]["fog"]["range"] = uf::vector::encode( /*this->*/fog.range );
serializer["light"]["fog"]["density"]["offset"] = uf::vector::encode( /*this->*/fog.density.offset );
serializer["light"]["fog"]["density"]["timescale"] = /*this->*/fog.density.timescale;
serializer["light"]["fog"]["density"]["threshold"] = /*this->*/fog.density.threshold;
serializer["light"]["fog"]["density"]["multiplier"] = /*this->*/fog.density.multiplier;
serializer["light"]["fog"]["density"]["scale"] = /*this->*/fog.density.scale;
serializer["sky"]["box"]["filename"] = /*this->*/sky.box.filename;
serializer["system"]["renderer"]["shader"]["mode"] = /*this->*/shader.mode;
serializer["system"]["renderer"]["shader"]["scalar"] = /*this->*/shader.scalar;
serializer["system"]["renderer"]["shader"]["parameters"] = uf::vector::encode( /*this->*/shader.parameters );
}
void ext::ExtSceneBehavior::Metadata::deserialize( uf::Object& self, uf::Serializer& serializer ) {
/*this->*/max.textures2D = ext::config["engine"]["scenes"]["textures"]["max"]["2D"].as<uint32_t>(/*this->*/max.textures2D);
/*this->*/max.texturesCube = ext::config["engine"]["scenes"]["textures"]["max"]["cube"].as<uint32_t>(/*this->*/max.texturesCube);
/*this->*/max.textures3D = ext::config["engine"]["scenes"]["textures"]["max"]["3D"].as<uint32_t>(/*this->*/max.textures3D);
/*this->*/shadow.enabled = ext::config["engine"]["scenes"]["shadows"]["enabled"].as<bool>(true) && serializer["light"]["shadows"].as<bool>(true);
/*this->*/shadow.samples = ext::config["engine"]["scenes"]["shadows"]["samples"].as<uint32_t>();
/*this->*/shadow.max = ext::config["engine"]["scenes"]["shadows"]["max"].as<uint32_t>();
/*this->*/shadow.update = ext::config["engine"]["scenes"]["shadows"]["update"].as<uint32_t>();
/*this->*/shadow.typeMap = ext::config["engine"]["scenes"]["shadows"]["map type"].as<uint32_t>(1);
/*this->*/light.enabled = ext::config["engine"]["scenes"]["lights"]["enabled"].as<bool>(true) && serializer["light"]["should"].as<bool>(true);
/*this->*/light.max = ext::config["engine"]["scenes"]["lights"]["max"].as<uint32_t>(/*this->*/light.max);
/*this->*/light.ambient = uf::vector::decode( serializer["light"]["ambient"], pod::Vector4f{ 1, 1, 1, 1 } );
/*this->*/light.specular = uf::vector::decode( serializer["light"]["specular"], pod::Vector4f{ 1, 1, 1, 1 } );
/*this->*/light.exposure = serializer["light"]["exposure"].as<float>(1.0f);
/*this->*/light.gamma = serializer["light"]["gamma"].as<float>(2.2f);
/*this->*/light.brightnessThreshold = serializer["light"]["brightnessThreshold"].as<float>(ext::config["engine"]["scenes"]["bloom"]["brightnessThreshold"].as<float>(1.0f));
/*this->*/light.useLightmaps = ext::config["engine"]["scenes"]["lights"]["useLightmaps"].as<bool>(true);
/*this->*/bloom.scale = serializer["bloom"]["scale"].as(ext::config["engine"]["scenes"]["bloom"]["scale"].as(bloom.scale));
/*this->*/bloom.strength = serializer["bloom"]["strength"].as(ext::config["engine"]["scenes"]["bloom"]["strength"].as(bloom.strength));
/*this->*/bloom.sigma = serializer["bloom"]["sigma"].as(ext::config["engine"]["scenes"]["bloom"]["sigma"].as(bloom.sigma));
/*this->*/bloom.samples = serializer["bloom"]["samples"].as(ext::config["engine"]["scenes"]["bloom"]["samples"].as(bloom.samples));
/*this->*/fog.color = uf::vector::decode( serializer["light"]["fog"]["color"], pod::Vector3f{ 1, 1, 1 } );
/*this->*/fog.stepScale = serializer["light"]["fog"]["step scale"].as<float>();
/*this->*/fog.absorbtion = serializer["light"]["fog"]["absorbtion"].as<float>();
/*this->*/fog.range = uf::vector::decode( serializer["light"]["fog"]["range"], pod::Vector2f{ 0, 0 } );
/*this->*/fog.density.offset = uf::vector::decode( serializer["light"]["fog"]["density"]["offset"], pod::Vector4f{ 0, 0, 0, 0 } );
/*this->*/fog.density.timescale = serializer["light"]["fog"]["density"]["timescale"].as<float>();
/*this->*/fog.density.threshold = serializer["light"]["fog"]["density"]["threshold"].as<float>();
/*this->*/fog.density.multiplier = serializer["light"]["fog"]["density"]["multiplier"].as<float>();
/*this->*/fog.density.scale = serializer["light"]["fog"]["density"]["scale"].as<float>();
/*this->*/sky.box.filename = serializer["sky"]["box"]["filename"].as<uf::stl::string>(sky.box.filename);
/*this->*/shader.mode = serializer["system"]["renderer"]["shader"]["mode"].as<uint32_t>();
/*this->*/shader.scalar = serializer["system"]["renderer"]["shader"]["scalar"].as<uint32_t>();
/*this->*/shader.parameters = uf::vector::decode( serializer["system"]["renderer"]["shader"]["parameters"], pod::Vector4f{0,0,0,0} );
/*this->*/shader.frameAccumulateLimit = serializer["system"]["renderer"]["shader"]["frame accumulate limit"].as<uint32_t>(0);
ext::json::forEach( serializer["system"]["renderer"]["shader"]["parameters"], [&]( uint32_t i, const ext::json::Value& value ){
if ( value.as<uf::stl::string>() == "time" ) /*this->*/shader.time = i;
});
if ( 0 <= /*this->*/shader.time && /*this->*/shader.time < 4 ) {
/*this->*/shader.parameters[/*this->*/shader.time] = uf::physics::time::current;
}
#if UF_USE_OPENGL_FIXED_FUNCTION
uf::renderer::states::rebuild = true;
if ( light.enabled ) {
GL_ERROR_CHECK(glEnable(GL_LIGHTING));
} else {
GL_ERROR_CHECK(glDisable(GL_LIGHTING));
}
#endif
if ( uf::renderer::settings::pipelines::bloom ) {
auto& renderMode = uf::renderer::getRenderMode("", true);
auto& blitter = *renderMode.getBlitter();
auto& shader = blitter.material.getShader("compute", "bloom");
struct UniformDescriptor {
float scale;
float strength;
float threshold;
float sigma;
float gamma;
float exposure;
uint32_t samples;
uint32_t padding;
};
UniformDescriptor uniforms = {
.scale = bloom.scale,
.strength = bloom.strength,
.threshold = light.brightnessThreshold,
.sigma = bloom.sigma,
.gamma = light.gamma,
.exposure = light.exposure,
.samples = bloom.samples,
};
shader.updateBuffer( (const void*) &uniforms, sizeof(uniforms), shader.getUniformBuffer("UBO") );
}
}
void ext::ExtSceneBehavior::bindBuffers( uf::Object& self, const uf::stl::string& renderModeName, const uf::stl::string& shaderType, const uf::stl::string& shaderPipeline ) {
auto& graph = this->getGraph();
auto& controller = this->getController();
auto& camera = controller.getComponent<uf::Camera>();
auto& controllerMetadata = controller.getComponent<uf::Serializer>();
auto& controllerTransform = controller.getComponent<pod::Transform<>>();
auto& metadata = this->getComponent<ext::ExtSceneBehavior::Metadata>();
auto& metadataVxgi = this->getComponent<ext::VoxelizerSceneBehavior::Metadata>();
auto& metadataJson = this->getComponent<uf::Serializer>();
auto& renderMode = uf::renderer::getRenderMode(renderModeName, true);
auto blitters = renderMode.getBlitters();
bindBuffers( self, *blitters.front(), shaderType, shaderPipeline );
}
void ext::ExtSceneBehavior::bindBuffers( uf::Object& self, uf::renderer::Graphic& graphic, const uf::stl::string& shaderType, const uf::stl::string& shaderPipeline ) {
auto& graph = this->getGraph();
auto& controller = this->getController();
auto& camera = controller.getComponent<uf::Camera>();
auto& controllerMetadata = controller.getComponent<uf::Serializer>();
auto& controllerTransform = controller.getComponent<pod::Transform<>>();
auto& metadata = this->getComponent<ext::ExtSceneBehavior::Metadata>();
auto& metadataVxgi = this->getComponent<ext::VoxelizerSceneBehavior::Metadata>();
auto& metadataJson = this->getComponent<uf::Serializer>();
if ( !graphic.initialized ) return;
#if UF_USE_VULKAN
struct UniformDescriptor {
struct Matrices {
alignas(16) pod::Matrix4f view;
alignas(16) pod::Matrix4f projection;
alignas(16) pod::Matrix4f iView;
alignas(16) pod::Matrix4f iProjection;
alignas(16) pod::Matrix4f iProjectionView;
alignas(16) pod::Vector4f eyePos;
} matrices[2];
struct Mode {
alignas(4) uint8_t mode;
alignas(4) uint8_t scalar;
alignas(8) pod::Vector2ui padding;
alignas(16) pod::Vector4f parameters;
} mode;
struct Fog {
pod::Vector3f color;
alignas(4) float stepScale;
pod::Vector3f offset;
alignas(4) float densityScale;
alignas(8) pod::Vector2f range;
alignas(4) float densityThreshold;
alignas(4) float densityMultiplier;
alignas(4) float absorbtion;
alignas(4) float padding1;
alignas(4) float padding2;
alignas(4) float padding3;
} fog;
struct VXGI {
alignas(16) pod::Matrix4f matrix;
alignas(4) float cascadePower;
alignas(4) float granularity;
alignas(4) float voxelizeScale;
alignas(4) float occlusionFalloff;
alignas(4) float traceStartOffsetFactor;
alignas(4) uint32_t shadows;
alignas(4) uint32_t padding2;
alignas(4) uint32_t padding3;
} vxgi;
struct Lengths {
alignas(4) uint32_t lights = 0;
alignas(4) uint32_t materials = 0;
alignas(4) uint32_t textures = 0;
alignas(4) uint32_t drawCommands = 0;
} lengths;
pod::Vector3f ambient;
alignas(4) float gamma;
alignas(4) float exposure;
alignas(4) float brightnessThreshold;
alignas(4) uint32_t msaa;
alignas(4) uint32_t shadowSamples;
alignas(4) uint32_t indexSkybox;
alignas(4) uint32_t useLightmaps;
alignas(4) uint32_t frameAccumulate;
alignas(4) uint32_t padding3;
};
// struct that contains our skybox cubemap, noise texture, and VXGI voxels
auto& sceneTextures = this->getComponent<pod::SceneTextures>();
uf::stl::vector<uf::renderer::Texture> textures2D;
textures2D.reserve( metadata.max.textures2D );
uf::stl::vector<uf::renderer::Texture> textures3D;
textures3D.reserve( metadata.max.textures3D );
uf::stl::vector<uf::renderer::Texture> texturesCube;
texturesCube.reserve( metadata.max.texturesCube );
// bind scene textures
for ( auto& key : uf::graph::storage.texture2Ds.keys ) textures2D.emplace_back().aliasTexture( uf::graph::storage.texture2Ds.map[key] );
// bind shadow maps
for ( auto& texture : uf::graph::storage.shadow2Ds ) textures2D.emplace_back().aliasTexture(texture);
for ( auto& texture : uf::graph::storage.shadowCubes ) texturesCube.emplace_back().aliasTexture(texture);
// bind skybox
size_t indexSkybox = texturesCube.size();
texturesCube.emplace_back().aliasTexture(sceneTextures.skybox);
// bind noise texture
size_t indexNoise = textures3D.size();
textures3D.emplace_back().aliasTexture(sceneTextures.noise);
// attach VXGI voxels
if ( uf::renderer::settings::pipelines::vxgi ) {
for ( auto& t : sceneTextures.voxels.id ) textures3D.emplace_back().aliasTexture(t);
for ( auto& t : sceneTextures.voxels.normal ) textures3D.emplace_back().aliasTexture(t);
for ( auto& t : sceneTextures.voxels.uv ) textures3D.emplace_back().aliasTexture(t);
for ( auto& t : sceneTextures.voxels.radiance ) textures3D.emplace_back().aliasTexture(t);
for ( auto& t : sceneTextures.voxels.depth ) textures3D.emplace_back().aliasTexture(t);
}
// bind textures
while ( textures2D.size() < metadata.max.textures2D ) textures2D.emplace_back().aliasTexture(uf::renderer::Texture2D::empty);
while ( texturesCube.size() < metadata.max.texturesCube ) texturesCube.emplace_back().aliasTexture(uf::renderer::TextureCube::empty);
while ( textures3D.size() < metadata.max.textures3D ) textures3D.emplace_back().aliasTexture(uf::renderer::Texture3D::empty);
// update uniform information
// hopefully write combining kicks in
UniformDescriptor uniforms; {
for ( auto i = 0; i < 2; ++i ) {
uniforms.matrices[i] = UniformDescriptor::Matrices{
.view = camera.getView(i),
.projection = camera.getProjection(i),
.iView = uf::matrix::inverse( camera.getView(i) ),
.iProjection = uf::matrix::inverse( camera.getProjection(i) ),
.iProjectionView = uf::matrix::inverse( camera.getProjection(i) * camera.getView(i) ),
.eyePos = camera.getEye( i ),
};
}
uniforms.mode = UniformDescriptor::Mode{
.mode = metadata.shader.mode,
.scalar = metadata.shader.scalar,
.padding = pod::Vector2ui{0,0},
.parameters = metadata.shader.parameters,
};
uniforms.fog = UniformDescriptor::Fog{
.color = metadata.fog.color,
.stepScale = metadata.fog.stepScale,
.offset = metadata.fog.density.offset * (float) metadata.fog.density.timescale * (float) uf::physics::time::current,
.densityScale = metadata.fog.density.scale,
.range = metadata.fog.range,
.densityThreshold = metadata.fog.density.threshold,
.densityMultiplier = metadata.fog.density.multiplier,
.absorbtion = metadata.fog.absorbtion,
};
uniforms.vxgi = UniformDescriptor::VXGI{
.matrix = metadataVxgi.extents.matrix,
.cascadePower = metadataVxgi.cascadePower,
.granularity = metadataVxgi.granularity,
.voxelizeScale = 1.0f / (metadataVxgi.voxelizeScale * std::max<uint32_t>( metadataVxgi.voxelSize.x, std::max<uint32_t>(metadataVxgi.voxelSize.y, metadataVxgi.voxelSize.z))),
.occlusionFalloff = metadataVxgi.occlusionFalloff,
.traceStartOffsetFactor = metadataVxgi.traceStartOffsetFactor,
.shadows = metadataVxgi.shadows,
};
uniforms.lengths = UniformDescriptor::Lengths{
.lights = MIN( uf::graph::storage.lights.size(), metadata.light.max ),
.materials = MIN( uf::graph::storage.materials.keys.size(), metadata.max.textures2D ),
.textures = MIN( uf::graph::storage.textures.keys.size(), metadata.max.textures2D ),
.drawCommands = MIN( 0, metadata.max.textures2D ),
};
uniforms.ambient = metadata.light.ambient;
uniforms.gamma = metadata.light.gamma;
uniforms.exposure = metadata.light.exposure;
uniforms.brightnessThreshold = metadata.light.brightnessThreshold;
uniforms.msaa = ext::vulkan::settings::msaa;
uniforms.shadowSamples = std::min( 0, metadata.shadow.samples );
uniforms.indexSkybox = indexSkybox;
// use sample lightmaps during deferred pass
uniforms.useLightmaps = metadata.light.useLightmaps;
uniforms.frameAccumulate = metadata.shader.frameAccumulate;
}
uf::stl::vector<VkImage> previousTextures;
for ( auto& texture : graphic.material.textures ) previousTextures.emplace_back(texture.image);
graphic.material.textures.clear();
// attach our textures to the graphic
for ( auto& t : textures2D ) graphic.material.textures.emplace_back().aliasTexture(t);
for ( auto& t : texturesCube ) graphic.material.textures.emplace_back().aliasTexture(t);
for ( auto& t : textures3D ) graphic.material.textures.emplace_back().aliasTexture(t);
// trigger an update when we have differing bound texture sizes
bool shouldUpdate = metadata.shader.invalidated || graphic.material.textures.size() != previousTextures.size();
for ( uint32_t i = 0; !shouldUpdate && i < previousTextures.size() && i < graphic.material.textures.size(); ++i ) {
if ( previousTextures[i] != graphic.material.textures[i].image ) shouldUpdate = true;
}
if ( shouldUpdate ) {
graphic.updatePipelines();
metadata.shader.invalidated = false;
}
auto& shader = graphic.material.getShader(shaderType, shaderPipeline);
shader.updateBuffer( (const void*) &uniforms, sizeof(uniforms), shader.getUniformBuffer("UBO") );
static UniformDescriptor previousUniforms;
bool shouldUpdate2 = !uf::matrix::equals( uniforms.matrices[0].view, previousUniforms.matrices[0].view, 0.0001f );
if ( shouldUpdate || shouldUpdate2 ) {
metadata.shader.frameAccumulateReset = true;
previousUniforms = uniforms;
}
#endif
}
#undef this