diff --git a/data/demo/index.template.html b/data/demo/index.template.html
new file mode 100644
index 0000000..ed12bf9
--- /dev/null
+++ b/data/demo/index.template.html
@@ -0,0 +1,30 @@
+
+
+
+
+
+
VALL-E Demo
+
Below are some samples from my VALL-E implementation: https://git.ecker.tech/mrq/vall-e/. I do not consider these to be state of the art. Below are samples from LibriSpeech, comparing against the samples the original VALL-E demo sampled.
+
+
+
Text
+
Prompt
+
Ground Truth
+
Our VALL-E
+
Original VALL-E
+
YourTTS
+
+ ${ENTRIES}
+
+
Below are some extra samples.
+
+
+
Text
+
Prompt
+
Ground Truth
+
Our VALL-E
+
+ ${SAMPLES}
+
+
+
\ No newline at end of file
diff --git a/vall_e/data.py b/vall_e/data.py
index 34b0f22..b57ba6d 100755
--- a/vall_e/data.py
+++ b/vall_e/data.py
@@ -575,7 +575,9 @@ class Dataset(_Dataset):
self.samplers = { name: PoolSampler( paths, keep_all=True, shuffle=self.sampler_shuffle ) for name, paths in self.paths_by_spkr_name.items() }
self.spkr_samplers = { name: PoolSampler( [*set(speakers)], keep_all=True, shuffle=self.sampler_shuffle ) for name, speakers in self.spkrs_by_spkr_group.items() }
- self.load_state_dict()
+ # loading validation state dict causes issues
+ if self.dataset_type != "validation":
+ self.load_state_dict()
@cached_property
def sampler_state_dict_path(self):
@@ -804,12 +806,14 @@ class Dataset(_Dataset):
lang = metadata["language"] if "language" in metadata else None
tone = metadata["tone"] if "tone" in metadata else None
+ text_string = metadata["text"] if "text" in metadata else None
else:
resps, metadata = _load_quants(path, return_metadata=True)
text = torch.tensor(tokenize( metadata["phonemes"] )).to(self.text_dtype)
lang = metadata["language"] if "language" in metadata else None
tone = metadata["tone"] if "tone" in metadata else None
+ text_string = metadata["text"] if "text" in metadata else None
if not lang:
lang = self.get_language(spkr_group)
@@ -1027,6 +1031,7 @@ class Dataset(_Dataset):
text=text,
proms=proms,
resps=resps,
+ text_string=text_string,
)
def head_(self, n):
@@ -1080,6 +1085,31 @@ def create_datasets():
return train_dataset, val_dataset
+def create_train_dataloader():
+ train_dataset = Dataset( training=True )
+ train_dl = _create_dataloader(train_dataset, training=True)
+
+ _logger.info(str(train_dataset.phone_symmap))
+ _logger.info(str(train_dataset.spkr_symmap))
+ _logger.info(str(train_dataset.spkr_group_symmap))
+
+ _logger.info(f"#samples (train): {len(train_dataset)}.")
+ _logger.info(f"#duration (train): {str(train_dataset.duration)}.")
+
+ return train_dl
+
+def create_val_dataloader():
+ val_dataset = Dataset( training=False )
+ val_dl = _create_dataloader(val_dataset, training=False)
+
+ _logger.info(str(val_dataset.phone_symmap))
+ _logger.info(str(val_dataset.spkr_symmap))
+ _logger.info(str(val_dataset.spkr_group_symmap))
+
+ _logger.info(f"#samples (val): {len(val_dataset)}.")
+ _logger.info(f"#duration (val): {str(val_dataset.duration)}.")
+
+ return val_dl
def create_train_val_dataloader():
train_dataset, val_dataset = create_datasets()
diff --git a/vall_e/demo.py b/vall_e/demo.py
new file mode 100644
index 0000000..9fe8645
--- /dev/null
+++ b/vall_e/demo.py
@@ -0,0 +1,202 @@
+"""
+A helper script to generate a demo page.
+
+Layout as expected:
+ ./data/demo/:
+ {speaker ID}:
+ out:
+ ours.wav (generated)
+ ms_valle.wav
+ yourtts.wav
+ prompt.txt (text to generate)
+ prompt.wav (reference clip to serve as the prompt)
+ reference.wav (ground truth utterance)
+
+Will also generate samples from a provided datset, if requested.
+"""
+
+import argparse
+import base64
+import random
+
+from pathlib import Path
+
+from .inference import TTS
+from .config import cfg
+from .data import create_train_dataloader, create_val_dataloader
+from .emb.qnt import decode_to_file
+
+from tqdm import tqdm
+
+def encode(path):
+ return "data:audio/wav;base64," + base64.b64encode(open(path, "rb").read()).decode('utf-8')
+
+# Would be downright sugoi if I could incorporate this with into __main__
+def main():
+ parser = argparse.ArgumentParser("VALL-E TTS Demo")
+
+ parser.add_argument("--yaml", type=Path, default=None)
+
+ parser.add_argument("--demo-dir", type=Path, default=None)
+ parser.add_argument("--skip-existing", action="store_true")
+ parser.add_argument("--sample-from-dataset", action="store_true")
+ parser.add_argument("--dataset-samples", type=int, default=0)
+ parser.add_argument("--audio-path-root", type=str, default=None)
+
+ parser.add_argument("--language", type=str, default="en")
+
+ parser.add_argument("--max-ar-steps", type=int, default=12 * cfg.dataset.frames_per_second)
+ parser.add_argument("--max-nar-levels", type=int, default=7)
+
+ parser.add_argument("--ar-temp", type=float, default=1.0)
+ parser.add_argument("--nar-temp", type=float, default=0.0)
+ parser.add_argument("--min-ar-temp", type=float, default=-1.0)
+ parser.add_argument("--min-nar-temp", type=float, default=-1.0)
+ parser.add_argument("--input-prompt-length", type=float, default=3.0)
+
+ parser.add_argument("--top-p", type=float, default=1.0)
+ parser.add_argument("--top-k", type=int, default=16)
+ parser.add_argument("--repetition-penalty", type=float, default=1.0)
+ parser.add_argument("--repetition-penalty-decay", type=float, default=0.0)
+ parser.add_argument("--length-penalty", type=float, default=0.0)
+ parser.add_argument("--beam-width", type=int, default=0)
+
+ parser.add_argument("--mirostat-tau", type=float, default=0)
+ parser.add_argument("--mirostat-eta", type=float, default=0)
+
+ parser.add_argument("--seed", type=int, default=None)
+
+ parser.add_argument("--device", type=str, default=None)
+ parser.add_argument("--amp", action="store_true")
+ parser.add_argument("--dtype", type=str, default=None)
+
+ args = parser.parse_args()
+
+ tts = TTS( config=args.yaml, device=args.device, dtype=args.dtype, amp=args.amp )
+
+ if not args.demo_dir:
+ args.demo_dir = Path("./data/demo/")
+
+ entries = []
+
+ # pull from provided samples
+ sample_dir = args.demo_dir / "librispeech"
+ if sample_dir.exists():
+ speakers = [ dir for dir in sample_dir.iterdir() if dir.is_dir() ]
+ sources = ["ms_valle", "yourtts"]
+
+ # generate demo output
+ for dir in tqdm(speakers, desc=f"Generating demo for speaker"):
+ text = open(dir / "prompt.txt").read()
+ prompt = dir / "prompt.wav"
+ out_path = dir / "out" / "ours.wav"
+
+ entries.append((
+ text,
+ [ prompt, dir / "reference.wav", out_path ] + [ dir / "out" / f"{source}.wav" for source in sources ]
+ ))
+
+ if args.skip_existing and out_path.exists():
+ continue
+
+ tts.inference(
+ text=text,
+ references=[prompt],
+ language=args.language,
+ out_path=out_path,
+ input_prompt_length=args.input_prompt_length,
+ max_ar_steps=args.max_ar_steps, max_nar_levels=args.max_nar_levels,
+ ar_temp=args.ar_temp, nar_temp=args.nar_temp,
+ min_ar_temp=args.min_ar_temp, min_nar_temp=args.min_nar_temp,
+ top_p=args.top_p, top_k=args.top_k,
+ repetition_penalty=args.repetition_penalty, repetition_penalty_decay=args.repetition_penalty_decay,
+ length_penalty=args.length_penalty,
+ beam_width=args.beam_width,
+ mirostat_tau=args.mirostat_tau, mirostat_eta=args.mirostat_eta,
+ seed=args.seed,
+ tqdm=False,
+ )
+
+ entries = [
+ f'
{text}
'+
+ "".join( [
+ f'
'
+ for audio in audios
+ ] )+
+ '
'
+ for text, audios in entries
+ ]
+
+ # read html template
+ html = open(args.demo_dir / "index.template.html", "r", encoding="utf-8").read()
+ # create html table, in one messy line
+ # replace in our template
+ html = html.replace(r"${ENTRIES}", "\n".join(entries) )
+
+ samples = []
+
+ # pull from dataset samples
+ if args.sample_from_dataset:
+ print("Loading dataloader...")
+ dataloader = create_train_dataloader()
+ print("Loaded dataloader.")
+
+ num = args.dataset_samples if args.dataset_samples else cfg.evaluation.size
+
+ length = len( dataloader.dataset )
+ for i in range( num ):
+ idx = random.randint( 0, length )
+ batch = dataloader.dataset[idx]
+
+ dir = args.demo_dir / "samples" / f'{i}'
+
+ (dir / "out").mkdir(parents=True, exist_ok=True)
+
+ text = batch["text_string"]
+
+ prompt = dir / "prompt.wav"
+ reference = dir / "reference.wav"
+ out_path = dir / "out" / "ours.wav"
+
+ decode_to_file( batch["proms"].to("cuda"), prompt, device="cuda" )
+ decode_to_file( batch["resps"].to("cuda"), reference, device="cuda" )
+
+ samples.append((
+ text,
+ [ prompt, reference, out_path ]
+ ))
+
+ tts.inference(
+ text=text,
+ references=[prompt],
+ language=args.language,
+ out_path=out_path,
+ input_prompt_length=args.input_prompt_length,
+ max_ar_steps=args.max_ar_steps, max_nar_levels=args.max_nar_levels,
+ ar_temp=args.ar_temp, nar_temp=args.nar_temp,
+ min_ar_temp=args.min_ar_temp, min_nar_temp=args.min_nar_temp,
+ top_p=args.top_p, top_k=args.top_k,
+ repetition_penalty=args.repetition_penalty, repetition_penalty_decay=args.repetition_penalty_decay,
+ length_penalty=args.length_penalty,
+ beam_width=args.beam_width,
+ mirostat_tau=args.mirostat_tau, mirostat_eta=args.mirostat_eta,
+ seed=args.seed,
+ tqdm=False,
+ )
+
+ samples = [
+ f'
{text}
'+
+ "".join( [
+ f'
'
+ for audio in audios
+ ] )+
+ '
'
+ for text, audios in samples
+ ]
+
+ html = html.replace(r"${SAMPLES}", "\n".join(samples) )
+
+ open( args.demo_dir / "index.html", "w", encoding="utf-8" ).write( html )
+
+if __name__ == "__main__":
+ main()
diff --git a/vall_e/engines/base.py b/vall_e/engines/base.py
index 0232f28..3312f7b 100755
--- a/vall_e/engines/base.py
+++ b/vall_e/engines/base.py
@@ -352,6 +352,10 @@ class Engines(dict[str, Engine]):
"userdata": userdata,
"config": config
}
+
+ if lora is None:
+ del state_dict['lora']
+
if callback:
state_dict = callback( state_dict, config = engine.hyper_config, save_path = save_path )
diff --git a/vall_e/export.py b/vall_e/export.py
index b6a8b19..5649f50 100755
--- a/vall_e/export.py
+++ b/vall_e/export.py
@@ -81,12 +81,32 @@ def extract_lora( state_dict, config = None, save_path = None, dtype = None ):
return state_dict
+def split_classifier_heads( state_dict, config = cfg.model, save_path = None, dtype = None):
+ levels = config.max_levels
+
+ if "classifier.weight" not in state_dict['module']:
+ return state_dict
+
+ # copy to new AudioClassifier
+ for i in range(levels):
+ tokens = 1025 if i == 0 else 1024
+
+ # trim per RVQ level (since level 0 has a stop token)
+ state_dict['module'][f'classifiers.proj.{i}.weight'] = state_dict['module']['classifier.weight'][:tokens, :]
+ state_dict['module'][f'classifiers.proj.{i}.bias'] = state_dict['module']['classifier.bias'][:tokens]
+
+ # delete old weights
+ del state_dict['module']['classifier.weight']
+ del state_dict['module']['classifier.bias']
+
+ return state_dict
def main():
parser = argparse.ArgumentParser("Save trained model to path.")
parser.add_argument("--module-only", action='store_true')
parser.add_argument("--hf", action='store_true', default=None) # convert to HF-style
parser.add_argument("--lora", action='store_true', default=None) # exports LoRA
+ parser.add_argument("--split-classifiers", action='store_true', default=None) # splits classifier heads
parser.add_argument("--dtype", type=str, default="auto") # set target dtype to export to
args, unknown = parser.parse_known_args()
@@ -98,6 +118,8 @@ def main():
callback = convert_to_hf
elif args.lora:
callback = extract_lora
+ elif args.split_classifiers:
+ callback = split_classifier_heads
if args.hf and args.lora:
raise Exception("Requesting more than one callback")
diff --git a/vall_e/inference.py b/vall_e/inference.py
index 6b9a7e2..c38b494 100755
--- a/vall_e/inference.py
+++ b/vall_e/inference.py
@@ -140,7 +140,9 @@ class TTS():
seed = None,
- out_path=None
+ out_path=None,
+
+ tqdm=True,
):
lines = text.split("\n")
@@ -194,6 +196,8 @@ class TTS():
sampling_beam_width=beam_width,
sampling_mirostat_tau=mirostat_tau,
sampling_mirostat_eta=mirostat_eta,
+
+ disable_tqdm=not tqdm,
)
resps_list = model_nar(
text_list=[phns], proms_list=[prom], lang_list=[lang], resps_list=resps_list,
@@ -202,15 +206,19 @@ class TTS():
sampling_min_temperature=min_nar_temp,
sampling_top_p=top_p, sampling_top_k=top_k,
sampling_repetition_penalty=repetition_penalty, sampling_repetition_penalty_decay=repetition_penalty_decay,
+
+ disable_tqdm=not tqdm,
)
elif model_len is not None:
- len_list = model_len( text_list=[phns], proms_list=[prom], max_steps=10 ) # don't need more than that
+ len_list = model_len( text_list=[phns], proms_list=[prom], max_steps=10, disable_tqdm=not tqdm ) # don't need more than that
resps_list = model_nar( text_list=[phns], proms_list=[prom], len_list=len_list,
max_levels=max_nar_levels,
sampling_temperature=nar_temp,
sampling_min_temperature=min_nar_temp,
sampling_top_p=top_p, sampling_top_k=top_k,
sampling_repetition_penalty=repetition_penalty, sampling_repetition_penalty_decay=repetition_penalty_decay,
+
+ disable_tqdm=not tqdm,
)
else:
raise Exception("!")
diff --git a/vall_e/models/ar_nar.py b/vall_e/models/ar_nar.py
index 220e045..a598611 100644
--- a/vall_e/models/ar_nar.py
+++ b/vall_e/models/ar_nar.py
@@ -114,6 +114,8 @@ class AR_NAR(Base):
sampling_beam_width: int = 0,
sampling_mirostat_tau: float = 0.0,
sampling_mirostat_eta: float = 0.1,
+
+ disable_tqdm=False,
):
device = text_list[0].device
batch_size = len(text_list)
@@ -206,7 +208,7 @@ class AR_NAR(Base):
prev_list = resps_list
- for n in trange( max_levels, desc="NAR" ):
+ for n in trange( max_levels, desc="NAR", disable=disable_tqdm ):
level = prev_list[0].shape[-1]
if level >= max_levels + 1: # min(max_levels + 1, self.n_resp_levels): # commented out to experiment with exceeding trained levels
break
@@ -271,7 +273,7 @@ class AR_NAR(Base):
scores = [ 1.0 ] * sampling_beam_width
# get next in sequence
- for n in trange(max_steps // max(1, self.causal_size), desc="AR"):
+ for n in trange(max_steps // max(1, self.causal_size), desc="AR", disable=disable_tqdm):
resps_list = self._unsqueeze_list(sequence_list)
inputs = self.inputs(
diff --git a/vall_e/models/nar.py b/vall_e/models/nar.py
index d3b803d..a251340 100644
--- a/vall_e/models/nar.py
+++ b/vall_e/models/nar.py
@@ -111,6 +111,8 @@ class NAR(Base):
sampling_beam_width: int = 0,
sampling_mirostat_tau: float = 0.0,
sampling_mirostat_eta: float = 0.1,
+
+ disable_tqdm=False,
):
device = text_list[0].device
batch_size = len(text_list)
@@ -188,7 +190,7 @@ class NAR(Base):
prev_list = [ torch.Tensor([ self.stop_token for _ in range(resp_len) ]).to(device=device, dtype=torch.int16) for resp_len in len_list ]
start = True
- for n in trange( max_levels, desc="NAR" ):
+ for n in trange( max_levels, desc="NAR", disable=disable_tqdm ):
level = 0 if n == 0 else prev_list[0].shape[-1]
if level >= max_levels + 1: # min(max_levels + 1, self.n_resp_levels): # commented out to experiment with exceeding trained levels
break
@@ -243,7 +245,7 @@ class NAR(Base):
stop_token = 10
task_list = [ "len" for _ in range(batch_size) ]
- for n in trange(10, desc="AR"):
+ for n in trange(10, desc="AR", disable=disable_tqdm):
len_list = sequence_list
inputs = self.inputs(