2021-11-01 23:00:22 +00:00
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from transformers import GPT2Model, GPT2Config
|
|
|
|
|
2021-11-01 23:02:28 +00:00
|
|
|
from models.tacotron2.text import symbols
|
2021-11-01 23:00:22 +00:00
|
|
|
from trainer.networks import register_model
|
|
|
|
from utils.util import opt_get
|
|
|
|
|
|
|
|
|
|
|
|
class ResBlock(nn.Module):
|
|
|
|
def __init__(self, chan):
|
|
|
|
super().__init__()
|
|
|
|
self.net = nn.Sequential(
|
2021-11-01 23:02:28 +00:00
|
|
|
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
|
2021-11-02 00:43:11 +00:00
|
|
|
nn.GroupNorm(chan//8, chan),
|
2021-11-01 23:00:22 +00:00
|
|
|
nn.ReLU(),
|
2021-11-01 23:02:28 +00:00
|
|
|
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
|
2021-11-02 00:43:11 +00:00
|
|
|
nn.GroupNorm(chan//8, chan)
|
2021-11-01 23:00:22 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return F.relu(self.net(x) + x)
|
|
|
|
|
|
|
|
|
|
|
|
class MelEncoder(nn.Module):
|
|
|
|
def __init__(self, channels, mel_channels=80):
|
|
|
|
super().__init__()
|
|
|
|
self.channels = channels
|
2021-11-01 23:02:28 +00:00
|
|
|
self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels//4, kernel_size=5, padding=2),
|
2021-11-01 23:00:22 +00:00
|
|
|
ResBlock(channels//4),
|
|
|
|
ResBlock(channels//4),
|
2021-11-01 23:02:28 +00:00
|
|
|
nn.Conv1d(channels//4, channels//2, kernel_size=3, stride=2, padding=1),
|
2021-11-02 00:43:11 +00:00
|
|
|
nn.GroupNorm(channels//16, channels//2),
|
2021-11-01 23:00:22 +00:00
|
|
|
nn.ReLU(),
|
|
|
|
ResBlock(channels//2),
|
|
|
|
ResBlock(channels//2),
|
2021-11-01 23:02:28 +00:00
|
|
|
nn.Conv1d(channels//2, channels, kernel_size=3, stride=2, padding=1),
|
2021-11-02 00:43:11 +00:00
|
|
|
nn.GroupNorm(channels//8, channels),
|
|
|
|
nn.ReLU(),
|
2021-11-01 23:00:22 +00:00
|
|
|
ResBlock(channels),
|
|
|
|
ResBlock(channels)
|
|
|
|
)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return self.encoder(x)
|
|
|
|
|
|
|
|
|
|
|
|
class GptAsrHf(nn.Module):
|
|
|
|
NUMBER_SYMBOLS = len(symbols)
|
|
|
|
NUMBER_TEXT_TOKENS = NUMBER_SYMBOLS+1
|
|
|
|
|
2021-11-02 00:43:11 +00:00
|
|
|
def __init__(self, layers=8, model_dim=512, heads=8, max_symbols_per_phrase=200, max_mel_frames=1000, checkpointing=True):
|
2021-11-01 23:00:22 +00:00
|
|
|
super().__init__()
|
|
|
|
self.max_mel_frames = max_mel_frames // 4 # Mel frames are reduced by a factor of 4 during encoding.
|
|
|
|
self.max_symbols_per_phrase = max_symbols_per_phrase
|
|
|
|
|
|
|
|
self.model_dim = model_dim
|
|
|
|
self.max_mel_frames = self.max_mel_frames
|
|
|
|
self.mel_encoder = MelEncoder(model_dim)
|
|
|
|
self.text_pos_embedding = nn.Embedding(self.max_symbols_per_phrase + 1, model_dim)
|
|
|
|
self.mel_pos_embedding = nn.Embedding(self.max_mel_frames, model_dim)
|
|
|
|
seq_length = 2+self.max_symbols_per_phrase+self.max_mel_frames
|
|
|
|
self.gpt = GPT2Model(GPT2Config(vocab_size=self.NUMBER_TEXT_TOKENS,
|
|
|
|
n_positions=seq_length,
|
|
|
|
n_ctx=seq_length,
|
|
|
|
n_embd=model_dim,
|
|
|
|
n_layer=layers,
|
2021-11-02 00:43:11 +00:00
|
|
|
n_head=heads,
|
|
|
|
gradient_checkpointing=checkpointing,
|
|
|
|
use_cache=not checkpointing))
|
2021-11-01 23:00:22 +00:00
|
|
|
self.final_norm = nn.LayerNorm(model_dim)
|
|
|
|
self.text_head = nn.Linear(model_dim, self.NUMBER_TEXT_TOKENS)
|
|
|
|
|
|
|
|
def get_logits(self, mel_inputs, text_targets):
|
|
|
|
# Pad front and back. Pad at front is the "START" token.
|
|
|
|
text_targets = F.pad(text_targets, (1,0), value=self.NUMBER_SYMBOLS)
|
|
|
|
text_targets = F.pad(text_targets, (0, self.max_symbols_per_phrase - text_targets.shape[1]))
|
|
|
|
text_emb = self.gpt.get_input_embeddings()(text_targets)
|
|
|
|
text_emb = text_emb + self.text_pos_embedding(torch.arange(text_emb.shape[1], device=text_targets.device))
|
|
|
|
mel_emb = self.mel_encoder(mel_inputs)
|
|
|
|
mel_emb = F.pad(mel_emb, (0, self.max_mel_frames - mel_emb.shape[-1]))
|
|
|
|
mel_emb = mel_emb.permute(0,2,1).contiguous()
|
|
|
|
mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device))
|
|
|
|
emb = torch.cat([mel_emb, text_emb], dim=1)
|
|
|
|
enc = self.gpt(inputs_embeds=emb, return_dict=True).last_hidden_state
|
|
|
|
text_logits = self.final_norm(enc[:, self.max_mel_frames:])
|
|
|
|
text_logits = self.text_head(text_logits)
|
|
|
|
text_logits = text_logits.permute(0,2,1)
|
|
|
|
return text_logits
|
|
|
|
|
|
|
|
def forward(self, mel_inputs, text_targets):
|
|
|
|
text_logits = self.get_logits(mel_inputs, text_targets)
|
|
|
|
loss_text = F.cross_entropy(text_logits[:,:,:-1], text_targets[:,1:].long())
|
|
|
|
return loss_text.mean(), text_logits
|
|
|
|
|
|
|
|
|
|
|
|
@register_model
|
|
|
|
def register_gpt_asr_hf(opt_net, opt):
|
|
|
|
return GptAsrHf(**opt_get(opt_net, ['kwargs'], {}))
|
|
|
|
|
|
|
|
|
|
|
|
# Quick script that loads a model and halves the number of layers, then saves that model.
|
|
|
|
def distill():
|
|
|
|
gpt = GptAsrHf(max_symbols_per_phrase=250, max_mel_frames=1400, layers=12, model_dim=768, heads=12)
|
|
|
|
gpt.load_state_dict(torch.load('../experiments/train_gpt_asr_mass/models/21500_mel_gen.pth'))
|
|
|
|
rc = 0
|
|
|
|
i = 0
|
|
|
|
while i < len(gpt.gpt.layers.layers):
|
|
|
|
if rc % 2 != 0:
|
|
|
|
del gpt.gpt.layers.layers[i]
|
|
|
|
else:
|
|
|
|
i += 1
|
|
|
|
rc += 1
|
|
|
|
torch.save(gpt.state_dict(), '../experiments/train_gpt_asr_mass/models/21500_mel_gen_distilled.pth')
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
gpt = GptAsrHf(max_symbols_per_phrase=100, max_mel_frames=200, layers=6, model_dim=256, heads=2)
|
|
|
|
l = gpt(torch.randn(2,80,800), torch.randint(high=len(symbols), size=(2,100)))
|
|
|
|
|
|
|
|
'''
|
|
|
|
with torch.no_grad():
|
|
|
|
t = torch.randn(1,80,800).cuda()
|
|
|
|
start = time()
|
|
|
|
s = gpt.inference_beam_topk(t)
|
|
|
|
print(time()-start)
|
|
|
|
|
|
|
|
start = time()
|
|
|
|
o = gpt.inference_beam_topk(t, fn='inference_beam_opt')
|
|
|
|
print(time()-start)
|
|
|
|
'''
|
|
|
|
|