Logic benchmark for large language models based on a fictional person by the name Jane.
Go to file
2023-07-26 13:20:13 +00:00
.gitignore Feat: add human eval 2023-07-26 14:09:45 +06:00
human_eval_example.png Feat: add human eval 2023-07-26 14:09:45 +06:00
human_eval_gui.py Feat: add human eval 2023-07-26 14:09:45 +06:00
jane_index.py Feat: add human eval 2023-07-26 14:09:45 +06:00
readme.md Update readme.md 2023-07-26 08:21:28 +00:00
requirements.txt Chore: update requirements.txt 2023-07-26 14:30:56 +06:00

Jane Index

Testing llms on quadruple amputee scenarios

Test of existing presets within ooba's webui by generating actions of the quadruple amputee;

Initial Generation (generative model)

  • start ooba's text generation webui service on port 5000;
  • load model you want to use for generation; ./jane_index.py will generate json file with that model name (for ex: TheBloke_Llama-2-13B-GPTQ.json);

Scoring (judge model)

  • go to ooba's webui and set judge model (preferably 65b+); ./jane_index.py TheBloke_Llama-2-13B-GPTQ.json judge scores each generation as success or failure, modifies initial json file to add scores to it, where 1 is a perfect score and 0 is a complete failure.

Index example in json file

scores of answers TheBloke_Nous-Hermes-Llama2-GTPQ
inside of file TheBloke_Nous-Hermes-Llama2-GTPQ.json
by judge MetaIX_GPT4-X-Alpasta-30b-4bit

    "MetaIX_GPT4-X-Alpasta-30b-4bit_success_rate_full": 0.6979166666666666,
    "MetaIX_GPT4-X-Alpasta-30b-4bit_success_rate_Asterism": 0.83,
    "MetaIX_GPT4-X-Alpasta-30b-4bit_success_rate_Big O": 0.83,
    "MetaIX_GPT4-X-Alpasta-30b-4bit_success_rate_Contrastive Search": 0.67,
    "MetaIX_GPT4-X-Alpasta-30b-4bit_success_rate_Debug-deterministic": 0.67,
    "MetaIX_GPT4-X-Alpasta-30b-4bit_success_rate_Divine Intellect": 0.33,
    "MetaIX_GPT4-X-Alpasta-30b-4bit_success_rate_Kobold-Godlike": 1.0,
    "MetaIX_GPT4-X-Alpasta-30b-4bit_success_rate_LLaMA-Precise": 0.5,
    "MetaIX_GPT4-X-Alpasta-30b-4bit_success_rate_Midnight Enigma": 0.67,
    "MetaIX_GPT4-X-Alpasta-30b-4bit_success_rate_Mirostat": 0.83,
    "MetaIX_GPT4-X-Alpasta-30b-4bit_success_rate_Shortwave": 0.83,
    "MetaIX_GPT4-X-Alpasta-30b-4bit_success_rate_simple-1": 1.0,
    "MetaIX_GPT4-X-Alpasta-30b-4bit_success_rate_Space Alien": 0.67,
    "MetaIX_GPT4-X-Alpasta-30b-4bit_success_rate_StarChat": 0.67,
    "MetaIX_GPT4-X-Alpasta-30b-4bit_success_rate_tfs-with-top-a": 0.67,
    "MetaIX_GPT4-X-Alpasta-30b-4bit_success_rate_Titanic": 0.33,
    "MetaIX_GPT4-X-Alpasta-30b-4bit_success_rate_Yara": 0.67

Run human eval gui

./human_eval_gui.py TheBloke_Llama-2-13B-GPTQ.json
screen shall appear
gui_screen
after you finish all objects score will appear in the text box,
at this point you may quit the gui and check scores in json file.