paired_voice_audio_dataset - aligned codes support

This commit is contained in:
James Betker 2022-01-15 17:38:26 -07:00
parent 3f177cd2b3
commit 35db5ebf41

View File

@ -23,6 +23,21 @@ def load_tsv(filename):
return filepaths_and_text
def load_tsv_aligned_codes(filename):
with open(filename, encoding='utf-8') as f:
components = [line.strip().split('\t') for line in f]
base = os.path.dirname(filename)
def convert_string_list_to_tensor(strlist):
if strlist.startswith('['):
strlist = strlist[1:]
if strlist.endswith(']'):
strlist = strlist[:-1]
as_ints = [int(s) for s in strlist.split(', ')]
return torch.tensor(as_ints)
filepaths_and_text = [[os.path.join(base, f'{component[1]}'), component[0], convert_string_list_to_tensor(component[2])] for component in components]
return filepaths_and_text
def load_mozilla_cv(filename):
with open(filename, encoding='utf-8') as f:
components = [line.strip().split('\t') for line in f][1:] # First line is the header
@ -68,12 +83,14 @@ class TextWavLoader(torch.utils.data.Dataset):
self.conditioning_candidates = opt_get(hparams, ['num_conditioning_candidates'], 1)
self.conditioning_length = opt_get(hparams, ['conditioning_length'], 44100)
self.debug_failures = opt_get(hparams, ['debug_loading_failures'], False)
self.load_aligned_codes = opt_get(hparams, ['load_aligned_codes'], False)
self.aligned_codes_to_audio_ratio = opt_get(hparams, ['aligned_codes_ratio'], 443)
self.audiopaths_and_text = []
for p, fm in zip(self.path, fetcher_mode):
if fm == 'lj' or fm == 'libritts':
fetcher_fn = load_filepaths_and_text
elif fm == 'tsv':
fetcher_fn = load_tsv
fetcher_fn = load_tsv_aligned_codes if self.load_aligned_codes else load_tsv
elif fm == 'mozilla_cv':
assert not self.load_conditioning # Conditioning inputs are incompatible with mozilla_cv
fetcher_fn = load_mozilla_cv
@ -88,6 +105,8 @@ class TextWavLoader(torch.utils.data.Dataset):
random.seed(hparams.seed)
random.shuffle(self.audiopaths_and_text)
self.max_wav_len = opt_get(hparams, ['max_wav_length'], None)
if self.max_wav_len is not None:
self.max_aligned_codes = self.max_wav_len / self.aligned_codes_to_audio_ratio
self.max_text_len = opt_get(hparams, ['max_text_length'], None)
assert self.max_wav_len is not None and self.max_text_len is not None
self.use_bpe_tokenizer = opt_get(hparams, ['use_bpe_tokenizer'], True)
@ -119,6 +138,8 @@ class TextWavLoader(torch.utils.data.Dataset):
self.skipped_items += 1
try:
tseq, wav, text, path = self.get_wav_text_pair(self.audiopaths_and_text[index])
if text is None or len(text.strip()) == 0:
raise ValueError
cond, cond_is_self = load_similar_clips(self.audiopaths_and_text[index][0], self.conditioning_length, self.sample_rate,
n=self.conditioning_candidates) if self.load_conditioning else (None, False)
except:
@ -127,6 +148,10 @@ class TextWavLoader(torch.utils.data.Dataset):
if self.debug_failures:
print(f"error loading {self.audiopaths_and_text[index][0]} {sys.exc_info()}")
return self[(index+1) % len(self)]
if self.load_aligned_codes:
aligned_codes = self.audiopaths_and_text[index][2]
actually_skipped_items = self.skipped_items
self.skipped_items = 0
if wav is None or \
@ -142,6 +167,9 @@ class TextWavLoader(torch.utils.data.Dataset):
orig_text_len = tseq.shape[0]
if wav.shape[-1] != self.max_wav_len:
wav = F.pad(wav, (0, self.max_wav_len - wav.shape[-1]))
if self.load_aligned_codes:
# These codes are aligned to audio inputs, so make sure to pad them as well.
aligned_codes = F.pad(aligned_codes, (0, self.max_aligned_codes-aligned_codes.shape[0]))
if tseq.shape[0] != self.max_text_len:
tseq = F.pad(tseq, (0, self.max_text_len - tseq.shape[0]))
res = {
@ -156,6 +184,8 @@ class TextWavLoader(torch.utils.data.Dataset):
if self.load_conditioning:
res['conditioning'] = cond
res['conditioning_contains_self'] = cond_is_self
if self.load_aligned_codes:
res['aligned_codes'] = aligned_codes
return res
def __len__(self):
@ -197,8 +227,8 @@ if __name__ == '__main__':
batch_sz = 8
params = {
'mode': 'paired_voice_audio',
'path': ['Y:\\bigasr_dataset\\hifi_tts\\test.txt'],
'fetcher_mode': ['libritts'],
'path': ['Y:\\clips\\books1\\transcribed-w2v.tsv'],
'fetcher_mode': ['tsv'],
'phase': 'train',
'n_workers': 0,
'batch_size': batch_sz,
@ -209,6 +239,7 @@ if __name__ == '__main__':
'num_conditioning_candidates': 2,
'conditioning_length': 44000,
'use_bpe_tokenizer': True,
'load_aligned_codes': False,
}
from data import create_dataset, create_dataloader