forked from mrq/DL-Art-School
paired_voice_audio_dataset - aligned codes support
This commit is contained in:
parent
3f177cd2b3
commit
35db5ebf41
|
@ -23,6 +23,21 @@ def load_tsv(filename):
|
||||||
return filepaths_and_text
|
return filepaths_and_text
|
||||||
|
|
||||||
|
|
||||||
|
def load_tsv_aligned_codes(filename):
|
||||||
|
with open(filename, encoding='utf-8') as f:
|
||||||
|
components = [line.strip().split('\t') for line in f]
|
||||||
|
base = os.path.dirname(filename)
|
||||||
|
def convert_string_list_to_tensor(strlist):
|
||||||
|
if strlist.startswith('['):
|
||||||
|
strlist = strlist[1:]
|
||||||
|
if strlist.endswith(']'):
|
||||||
|
strlist = strlist[:-1]
|
||||||
|
as_ints = [int(s) for s in strlist.split(', ')]
|
||||||
|
return torch.tensor(as_ints)
|
||||||
|
filepaths_and_text = [[os.path.join(base, f'{component[1]}'), component[0], convert_string_list_to_tensor(component[2])] for component in components]
|
||||||
|
return filepaths_and_text
|
||||||
|
|
||||||
|
|
||||||
def load_mozilla_cv(filename):
|
def load_mozilla_cv(filename):
|
||||||
with open(filename, encoding='utf-8') as f:
|
with open(filename, encoding='utf-8') as f:
|
||||||
components = [line.strip().split('\t') for line in f][1:] # First line is the header
|
components = [line.strip().split('\t') for line in f][1:] # First line is the header
|
||||||
|
@ -68,12 +83,14 @@ class TextWavLoader(torch.utils.data.Dataset):
|
||||||
self.conditioning_candidates = opt_get(hparams, ['num_conditioning_candidates'], 1)
|
self.conditioning_candidates = opt_get(hparams, ['num_conditioning_candidates'], 1)
|
||||||
self.conditioning_length = opt_get(hparams, ['conditioning_length'], 44100)
|
self.conditioning_length = opt_get(hparams, ['conditioning_length'], 44100)
|
||||||
self.debug_failures = opt_get(hparams, ['debug_loading_failures'], False)
|
self.debug_failures = opt_get(hparams, ['debug_loading_failures'], False)
|
||||||
|
self.load_aligned_codes = opt_get(hparams, ['load_aligned_codes'], False)
|
||||||
|
self.aligned_codes_to_audio_ratio = opt_get(hparams, ['aligned_codes_ratio'], 443)
|
||||||
self.audiopaths_and_text = []
|
self.audiopaths_and_text = []
|
||||||
for p, fm in zip(self.path, fetcher_mode):
|
for p, fm in zip(self.path, fetcher_mode):
|
||||||
if fm == 'lj' or fm == 'libritts':
|
if fm == 'lj' or fm == 'libritts':
|
||||||
fetcher_fn = load_filepaths_and_text
|
fetcher_fn = load_filepaths_and_text
|
||||||
elif fm == 'tsv':
|
elif fm == 'tsv':
|
||||||
fetcher_fn = load_tsv
|
fetcher_fn = load_tsv_aligned_codes if self.load_aligned_codes else load_tsv
|
||||||
elif fm == 'mozilla_cv':
|
elif fm == 'mozilla_cv':
|
||||||
assert not self.load_conditioning # Conditioning inputs are incompatible with mozilla_cv
|
assert not self.load_conditioning # Conditioning inputs are incompatible with mozilla_cv
|
||||||
fetcher_fn = load_mozilla_cv
|
fetcher_fn = load_mozilla_cv
|
||||||
|
@ -88,6 +105,8 @@ class TextWavLoader(torch.utils.data.Dataset):
|
||||||
random.seed(hparams.seed)
|
random.seed(hparams.seed)
|
||||||
random.shuffle(self.audiopaths_and_text)
|
random.shuffle(self.audiopaths_and_text)
|
||||||
self.max_wav_len = opt_get(hparams, ['max_wav_length'], None)
|
self.max_wav_len = opt_get(hparams, ['max_wav_length'], None)
|
||||||
|
if self.max_wav_len is not None:
|
||||||
|
self.max_aligned_codes = self.max_wav_len / self.aligned_codes_to_audio_ratio
|
||||||
self.max_text_len = opt_get(hparams, ['max_text_length'], None)
|
self.max_text_len = opt_get(hparams, ['max_text_length'], None)
|
||||||
assert self.max_wav_len is not None and self.max_text_len is not None
|
assert self.max_wav_len is not None and self.max_text_len is not None
|
||||||
self.use_bpe_tokenizer = opt_get(hparams, ['use_bpe_tokenizer'], True)
|
self.use_bpe_tokenizer = opt_get(hparams, ['use_bpe_tokenizer'], True)
|
||||||
|
@ -119,6 +138,8 @@ class TextWavLoader(torch.utils.data.Dataset):
|
||||||
self.skipped_items += 1
|
self.skipped_items += 1
|
||||||
try:
|
try:
|
||||||
tseq, wav, text, path = self.get_wav_text_pair(self.audiopaths_and_text[index])
|
tseq, wav, text, path = self.get_wav_text_pair(self.audiopaths_and_text[index])
|
||||||
|
if text is None or len(text.strip()) == 0:
|
||||||
|
raise ValueError
|
||||||
cond, cond_is_self = load_similar_clips(self.audiopaths_and_text[index][0], self.conditioning_length, self.sample_rate,
|
cond, cond_is_self = load_similar_clips(self.audiopaths_and_text[index][0], self.conditioning_length, self.sample_rate,
|
||||||
n=self.conditioning_candidates) if self.load_conditioning else (None, False)
|
n=self.conditioning_candidates) if self.load_conditioning else (None, False)
|
||||||
except:
|
except:
|
||||||
|
@ -127,6 +148,10 @@ class TextWavLoader(torch.utils.data.Dataset):
|
||||||
if self.debug_failures:
|
if self.debug_failures:
|
||||||
print(f"error loading {self.audiopaths_and_text[index][0]} {sys.exc_info()}")
|
print(f"error loading {self.audiopaths_and_text[index][0]} {sys.exc_info()}")
|
||||||
return self[(index+1) % len(self)]
|
return self[(index+1) % len(self)]
|
||||||
|
|
||||||
|
if self.load_aligned_codes:
|
||||||
|
aligned_codes = self.audiopaths_and_text[index][2]
|
||||||
|
|
||||||
actually_skipped_items = self.skipped_items
|
actually_skipped_items = self.skipped_items
|
||||||
self.skipped_items = 0
|
self.skipped_items = 0
|
||||||
if wav is None or \
|
if wav is None or \
|
||||||
|
@ -142,6 +167,9 @@ class TextWavLoader(torch.utils.data.Dataset):
|
||||||
orig_text_len = tseq.shape[0]
|
orig_text_len = tseq.shape[0]
|
||||||
if wav.shape[-1] != self.max_wav_len:
|
if wav.shape[-1] != self.max_wav_len:
|
||||||
wav = F.pad(wav, (0, self.max_wav_len - wav.shape[-1]))
|
wav = F.pad(wav, (0, self.max_wav_len - wav.shape[-1]))
|
||||||
|
if self.load_aligned_codes:
|
||||||
|
# These codes are aligned to audio inputs, so make sure to pad them as well.
|
||||||
|
aligned_codes = F.pad(aligned_codes, (0, self.max_aligned_codes-aligned_codes.shape[0]))
|
||||||
if tseq.shape[0] != self.max_text_len:
|
if tseq.shape[0] != self.max_text_len:
|
||||||
tseq = F.pad(tseq, (0, self.max_text_len - tseq.shape[0]))
|
tseq = F.pad(tseq, (0, self.max_text_len - tseq.shape[0]))
|
||||||
res = {
|
res = {
|
||||||
|
@ -156,6 +184,8 @@ class TextWavLoader(torch.utils.data.Dataset):
|
||||||
if self.load_conditioning:
|
if self.load_conditioning:
|
||||||
res['conditioning'] = cond
|
res['conditioning'] = cond
|
||||||
res['conditioning_contains_self'] = cond_is_self
|
res['conditioning_contains_self'] = cond_is_self
|
||||||
|
if self.load_aligned_codes:
|
||||||
|
res['aligned_codes'] = aligned_codes
|
||||||
return res
|
return res
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
|
@ -197,8 +227,8 @@ if __name__ == '__main__':
|
||||||
batch_sz = 8
|
batch_sz = 8
|
||||||
params = {
|
params = {
|
||||||
'mode': 'paired_voice_audio',
|
'mode': 'paired_voice_audio',
|
||||||
'path': ['Y:\\bigasr_dataset\\hifi_tts\\test.txt'],
|
'path': ['Y:\\clips\\books1\\transcribed-w2v.tsv'],
|
||||||
'fetcher_mode': ['libritts'],
|
'fetcher_mode': ['tsv'],
|
||||||
'phase': 'train',
|
'phase': 'train',
|
||||||
'n_workers': 0,
|
'n_workers': 0,
|
||||||
'batch_size': batch_sz,
|
'batch_size': batch_sz,
|
||||||
|
@ -209,6 +239,7 @@ if __name__ == '__main__':
|
||||||
'num_conditioning_candidates': 2,
|
'num_conditioning_candidates': 2,
|
||||||
'conditioning_length': 44000,
|
'conditioning_length': 44000,
|
||||||
'use_bpe_tokenizer': True,
|
'use_bpe_tokenizer': True,
|
||||||
|
'load_aligned_codes': False,
|
||||||
}
|
}
|
||||||
from data import create_dataset, create_dataloader
|
from data import create_dataset, create_dataloader
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user