forked from mrq/DL-Art-School
Convert lambda coupler to use groupnorm instead of batchnorm
This commit is contained in:
parent
7070142805
commit
43da1f9c4b
|
@ -185,10 +185,10 @@ class SwitchedConvHardRouting(nn.Module):
|
|||
self.coupler = Conv2d(coupler_dim_in, breadth, kernel_size=1, stride=self.stride)
|
||||
elif coupler_mode == 'lambda':
|
||||
self.coupler = nn.Sequential(nn.Conv2d(coupler_dim_in, coupler_dim_in, 1),
|
||||
nn.BatchNorm2d(coupler_dim_in),
|
||||
nn.GroupNorm(16, coupler_dim_in),
|
||||
nn.ReLU(),
|
||||
LambdaLayer(dim=coupler_dim_in, dim_out=breadth, r=23, dim_k=16, heads=2, dim_u=1),
|
||||
nn.BatchNorm2d(breadth),
|
||||
nn.GroupNorm(16, breadth),
|
||||
nn.ReLU(),
|
||||
Conv2d(breadth, breadth, 1, stride=self.stride))
|
||||
else:
|
||||
|
@ -240,7 +240,7 @@ class SwitchedConvHardRouting(nn.Module):
|
|||
self.last_select = selector.detach().clone()
|
||||
self.latest_masks = (selector.max(dim=1, keepdim=True)[0].repeat(1,self.breadth,1,1) == selector).float().argmax(dim=1)
|
||||
|
||||
if False:
|
||||
if True:
|
||||
# This is a custom CUDA implementation which should be faster and less memory intensive (once completed).
|
||||
return SwitchedConvHardRoutingFunction.apply(input, selector, self.weight, self.bias, self.stride)
|
||||
else:
|
||||
|
|
|
@ -214,7 +214,7 @@ def convert_weights(weights_file):
|
|||
from models.vqvae.vqvae_3 import VQVAE3
|
||||
std_model = VQVAE3()
|
||||
std_model.load_state_dict(sd)
|
||||
nsd = convert_conv_net_state_dict_to_switched_conv(std_model, 8, ['quantize_conv_t', 'quantize_conv_b',
|
||||
nsd = convert_conv_net_state_dict_to_switched_conv(std_model, 16, ['quantize_conv_t', 'quantize_conv_b',
|
||||
'enc_b.blocks.0', 'enc_t.blocks.0',
|
||||
'conv.1', 'conv.3', 'initial_conv', 'final_conv'])
|
||||
torch.save(nsd, "converted.pth")
|
||||
|
@ -229,9 +229,9 @@ def register_vqvae3_hard_switch(opt_net, opt):
|
|||
def performance_test():
|
||||
cfg = {
|
||||
'mode': 'lambda',
|
||||
'breadth': 8,
|
||||
'hard_enabled': False,
|
||||
'dropout': 0
|
||||
'breadth': 16,
|
||||
'hard_enabled': True,
|
||||
'dropout': 0.4
|
||||
}
|
||||
net = VQVAE3HardSwitch(cfg=cfg).to('cuda')
|
||||
loss = nn.L1Loss()
|
||||
|
@ -250,5 +250,5 @@ def performance_test():
|
|||
if __name__ == '__main__':
|
||||
#v = VQVAE3HardSwitch()
|
||||
#print(v(torch.randn(1,3,128,128))[0].shape)
|
||||
convert_weights("../../../experiments/test_vqvae3.pth")
|
||||
#performance_test()
|
||||
#convert_weights("../../../experiments/vqvae_base.pth")
|
||||
performance_test()
|
||||
|
|
Loading…
Reference in New Issue
Block a user