forked from mrq/DL-Art-School
Update music_diffusion_fid to support waveform diffusion from codes
This commit is contained in:
parent
e0bf3a0ddc
commit
ea21a8b107
|
@ -4,5 +4,5 @@ https://github.com/neonbjb/demucs
|
||||||
```
|
```
|
||||||
conda activate demucs
|
conda activate demucs
|
||||||
python setup.py install
|
python setup.py install
|
||||||
CUDA_VISIBLE_DEVICES=0 python -m demucs /y/split/bt-music-5 --out=/y/separated/bt-music-5 --num_workers=2 --device cuda
|
CUDA_VISIBLE_DEVICES=0 python -m demucs /y/split/bt-music-5 --out=/y/separated/bt-music-5 --num_workers=2 --device cuda --two-stems=vocals
|
||||||
```
|
```
|
|
@ -13,12 +13,14 @@ from tqdm import tqdm
|
||||||
|
|
||||||
import trainer.eval.evaluator as evaluator
|
import trainer.eval.evaluator as evaluator
|
||||||
from data.audio.unsupervised_audio_dataset import load_audio
|
from data.audio.unsupervised_audio_dataset import load_audio
|
||||||
|
from models.audio.mel2vec import ContrastiveTrainingWrapper
|
||||||
from models.audio.music.unet_diffusion_waveform_gen import DiffusionWaveformGen
|
from models.audio.music.unet_diffusion_waveform_gen import DiffusionWaveformGen
|
||||||
from models.clip.contrastive_audio import ContrastiveAudio
|
from models.clip.contrastive_audio import ContrastiveAudio
|
||||||
from models.diffusion.gaussian_diffusion import get_named_beta_schedule
|
from models.diffusion.gaussian_diffusion import get_named_beta_schedule
|
||||||
from models.diffusion.respace import space_timesteps, SpacedDiffusion
|
from models.diffusion.respace import space_timesteps, SpacedDiffusion
|
||||||
from trainer.injectors.audio_injectors import denormalize_mel, TorchMelSpectrogramInjector, pixel_shuffle_1d, \
|
from trainer.injectors.audio_injectors import denormalize_mel, TorchMelSpectrogramInjector, pixel_shuffle_1d, \
|
||||||
normalize_mel
|
normalize_mel
|
||||||
|
from utils.music_utils import get_music_codegen, get_mel2wav_model
|
||||||
from utils.util import opt_get, load_model_from_config
|
from utils.util import opt_get, load_model_from_config
|
||||||
|
|
||||||
|
|
||||||
|
@ -47,11 +49,7 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
||||||
self.dev = self.env['device']
|
self.dev = self.env['device']
|
||||||
mode = opt_get(opt_eval, ['diffusion_type'], 'tts')
|
mode = opt_get(opt_eval, ['diffusion_type'], 'tts')
|
||||||
|
|
||||||
self.spec_decoder = DiffusionWaveformGen(model_channels=256, in_channels=16, in_mel_channels=256, out_channels=32,
|
self.spec_decoder = get_mel2wav_model()
|
||||||
channel_mult=[1,2,3,4], num_res_blocks=[3,3,3,3], token_conditioning_resolutions=[1,4],
|
|
||||||
num_heads=8,
|
|
||||||
dropout=0, kernel_size=3, scale_factor=2, time_embed_dim_multiplier=4, unconditioned_percentage=0)
|
|
||||||
self.spec_decoder.load_state_dict(torch.load('../experiments/music_waveform_gen.pth', map_location=torch.device('cpu')))
|
|
||||||
self.projector = ContrastiveAudio(model_dim=512, transformer_heads=8, dropout=0, encoder_depth=8, mel_channels=256)
|
self.projector = ContrastiveAudio(model_dim=512, transformer_heads=8, dropout=0, encoder_depth=8, mel_channels=256)
|
||||||
self.projector.load_state_dict(torch.load('../experiments/music_eval_projector.pth', map_location=torch.device('cpu')))
|
self.projector.load_state_dict(torch.load('../experiments/music_eval_projector.pth', map_location=torch.device('cpu')))
|
||||||
self.local_modules = {'spec_decoder': self.spec_decoder, 'projector': self.projector}
|
self.local_modules = {'spec_decoder': self.spec_decoder, 'projector': self.projector}
|
||||||
|
@ -66,6 +64,9 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
||||||
self.gap_gen_fn = self.gen_time_gap
|
self.gap_gen_fn = self.gen_time_gap
|
||||||
elif 'rerender' in mode:
|
elif 'rerender' in mode:
|
||||||
self.diffusion_fn = self.perform_rerender
|
self.diffusion_fn = self.perform_rerender
|
||||||
|
elif 'from_codes' == mode:
|
||||||
|
self.diffusion_fn = self.perform_diffusion_from_codes
|
||||||
|
self.local_modules['codegen'] = get_music_codegen()
|
||||||
self.spec_fn = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 22000, 'normalize': True, 'in': 'in', 'out': 'out'}, {})
|
self.spec_fn = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 22000, 'normalize': True, 'in': 'in', 'out': 'out'}, {})
|
||||||
|
|
||||||
def load_data(self, path):
|
def load_data(self, path):
|
||||||
|
@ -154,6 +155,29 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
||||||
|
|
||||||
return gen, real_resampled, normalize_mel(spec), mel, sample_rate
|
return gen, real_resampled, normalize_mel(spec), mel, sample_rate
|
||||||
|
|
||||||
|
def perform_diffusion_from_codes(self, audio, sample_rate=22050):
|
||||||
|
if sample_rate != sample_rate:
|
||||||
|
real_resampled = torchaudio.functional.resample(audio, 22050, sample_rate).unsqueeze(0)
|
||||||
|
else:
|
||||||
|
real_resampled = audio
|
||||||
|
audio = audio.unsqueeze(0)
|
||||||
|
|
||||||
|
# Fetch the MEL and mask out the requested bands.
|
||||||
|
mel = self.spec_fn({'in': audio})['out']
|
||||||
|
codegen = self.local_modules['codegen'].to(mel.device)
|
||||||
|
codes = codegen.get_codes(mel)
|
||||||
|
mel_norm = normalize_mel(mel)
|
||||||
|
gen_mel = self.diffuser.p_sample_loop(self.model, mel_norm.shape, model_kwargs={'aligned_conditioning': codes, 'conditioning_input': mel[:,:,:117]})
|
||||||
|
|
||||||
|
gen_mel_denorm = denormalize_mel(gen_mel)
|
||||||
|
output_shape = (1,16,audio.shape[-1]//16)
|
||||||
|
self.spec_decoder = self.spec_decoder.to(audio.device)
|
||||||
|
gen_wav = self.diffuser.p_sample_loop(self.spec_decoder, output_shape, model_kwargs={'aligned_conditioning': gen_mel_denorm})
|
||||||
|
gen_wav = pixel_shuffle_1d(gen_wav, 16)
|
||||||
|
|
||||||
|
return gen_wav, real_resampled, gen_mel, mel_norm, sample_rate
|
||||||
|
|
||||||
|
|
||||||
def project(self, sample, sample_rate):
|
def project(self, sample, sample_rate):
|
||||||
sample = torchaudio.functional.resample(sample, sample_rate, 22050)
|
sample = torchaudio.functional.resample(sample, sample_rate, 22050)
|
||||||
mel = self.spec_fn({'in': sample})['out']
|
mel = self.spec_fn({'in': sample})['out']
|
||||||
|
@ -217,12 +241,12 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
diffusion = load_model_from_config('D:\\dlas\\options\\train_music_waveform_gen3.yml', 'generator',
|
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_diffusion_flat.yml', 'generator',
|
||||||
also_load_savepoint=False,
|
also_load_savepoint=False,
|
||||||
load_path='X:\\dlas\\experiments\\train_music_waveform_gen\\models\\75500_generator_ema.pth').cuda()
|
load_path='X:\\dlas\\experiments\\train_music_diffusion_flat\\models\\26000_generator.pth').cuda()
|
||||||
opt_eval = {'path': 'Y:\\split\\yt-music-eval', 'diffusion_steps': 400,
|
opt_eval = {'path': 'Y:\\split\\yt-music-eval', 'diffusion_steps': 100,
|
||||||
'conditioning_free': False, 'conditioning_free_k': 1,
|
'conditioning_free': False, 'conditioning_free_k': 1,
|
||||||
'diffusion_schedule': 'linear', 'diffusion_type': 'spec_decode'}
|
'diffusion_schedule': 'linear', 'diffusion_type': 'from_codes'}
|
||||||
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 23, 'device': 'cuda', 'opt': {}}
|
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 25, 'device': 'cuda', 'opt': {}}
|
||||||
eval = MusicDiffusionFid(diffusion, opt_eval, env)
|
eval = MusicDiffusionFid(diffusion, opt_eval, env)
|
||||||
print(eval.perform_eval())
|
print(eval.perform_eval())
|
||||||
|
|
20
codes/utils/music_utils.py
Normal file
20
codes/utils/music_utils.py
Normal file
|
@ -0,0 +1,20 @@
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from models.audio.mel2vec import ContrastiveTrainingWrapper
|
||||||
|
from models.audio.music.unet_diffusion_waveform_gen_simple import DiffusionWaveformGen
|
||||||
|
|
||||||
|
|
||||||
|
def get_mel2wav_model():
|
||||||
|
model = DiffusionWaveformGen(model_channels=256, in_channels=16, in_mel_channels=256, out_channels=32, channel_mult=[1,2,3,4,4],
|
||||||
|
num_res_blocks=[3,3,2,2,1], token_conditioning_resolutions=[1,4,16], dropout=0, kernel_size=3, scale_factor=2,
|
||||||
|
time_embed_dim_multiplier=4, unconditioned_percentage=0)
|
||||||
|
model.load_state_dict(torch.load("../experiments/music_mel2wav.pth", map_location=torch.device('cpu')))
|
||||||
|
model.eval()
|
||||||
|
return model
|
||||||
|
|
||||||
|
def get_music_codegen():
|
||||||
|
model = ContrastiveTrainingWrapper(mel_input_channels=256, inner_dim=1024, layers=24, dropout=0, mask_time_prob=0,
|
||||||
|
mask_time_length=6, num_negatives=100, codebook_size=8, codebook_groups=8, disable_custom_linear_init=True)
|
||||||
|
model.load_state_dict(torch.load("../experiments/m2v_music.pth", map_location=torch.device('cpu')))
|
||||||
|
model.eval()
|
||||||
|
return model
|
Loading…
Reference in New Issue
Block a user