DL-Art-School/codes/data/multiscale_dataset.py
2020-10-30 09:59:54 -06:00

161 lines
6.6 KiB
Python

import random
import numpy as np
import cv2
import torch
import torch.utils.data as data
import data.util as util
from PIL import Image, ImageOps
from io import BytesIO
import torchvision.transforms.functional as F
# Reads full-quality images and pulls tiles at regular zoom intervals from them. Only usable for training purposes.
from data.image_corruptor import ImageCorruptor
class MultiScaleDataset(data.Dataset):
def __init__(self, opt):
super(MultiScaleDataset, self).__init__()
self.opt = opt
self.data_type = 'img'
self.tile_size = self.opt['hq_tile_size']
self.num_scales = self.opt['num_scales']
self.hq_size_cap = self.tile_size * 2 ** self.num_scales
self.scale = self.opt['scale']
self.paths_hq, self.sizes_hq = util.get_image_paths(self.data_type, opt['paths'], [1 for _ in opt['paths']])
self.corruptor = ImageCorruptor(opt)
# Selects the smallest dimension from the image and crops it randomly so the other dimension matches. The cropping
# offset from center is chosen on a normal probability curve.
def get_square_image(self, image):
h, w, _ = image.shape
if h == w:
return image
offset = max(min(np.random.normal(scale=.3), 1.0), -1.0)
if h > w:
diff = h - w
center = diff // 2
top = int(center + offset * (center - 2))
return image[top:top+w, :, :]
else:
diff = w - h
center = diff // 2
left = int(center + offset * (center - 2))
return image[:, left:left+h, :]
def recursively_extract_patches(self, input_img, result_list, depth):
if depth >= self.num_scales:
return
patch_size = self.hq_size_cap // (2 ** depth)
# First pull the four sub-patches. Important: if this is changed, be sure to edit build_multiscale_patch_index_map() below.
patches = [input_img[:patch_size, :patch_size],
input_img[:patch_size, patch_size:],
input_img[patch_size:, :patch_size],
input_img[patch_size:, patch_size:]]
result_list.extend([cv2.resize(p, (self.tile_size, self.tile_size), interpolation=cv2.INTER_AREA) for p in patches])
for p in patches:
self.recursively_extract_patches(p, result_list, depth+1)
def __getitem__(self, index):
# get full size image
full_path = self.paths_hq[index % len(self.paths_hq)]
img_full = util.read_img(None, full_path, None)
img_full = util.channel_convert(img_full.shape[2], 'RGB', [img_full])[0]
img_full = util.augment([img_full], True, True)[0]
img_full = self.get_square_image(img_full)
img_full = cv2.resize(img_full, (self.hq_size_cap, self.hq_size_cap), interpolation=cv2.INTER_AREA)
patches_hq = [cv2.resize(img_full, (self.tile_size, self.tile_size), interpolation=cv2.INTER_AREA)]
self.recursively_extract_patches(img_full, patches_hq, 1)
# Image corruption is applied against the full size image for this dataset.
img_corrupted = self.corruptor.corrupt_images([img_full])[0]
patches_hq_corrupted = [cv2.resize(img_corrupted, (self.tile_size, self.tile_size), interpolation=cv2.INTER_AREA)]
self.recursively_extract_patches(img_corrupted, patches_hq_corrupted, 1)
# BGR to RGB, HWC to CHW, numpy to tensor
if patches_hq[0].shape[2] == 3:
patches_hq = [cv2.cvtColor(p, cv2.COLOR_BGR2RGB) for p in patches_hq]
patches_hq_corrupted = [cv2.cvtColor(p, cv2.COLOR_BGR2RGB) for p in patches_hq_corrupted]
patches_hq = [torch.from_numpy(np.ascontiguousarray(np.transpose(p, (2, 0, 1)))).float() for p in patches_hq]
patches_hq = torch.stack(patches_hq, dim=0)
patches_hq_corrupted = [torch.from_numpy(np.ascontiguousarray(np.transpose(p, (2, 0, 1)))).float() for p in patches_hq_corrupted]
patches_lq = [torch.nn.functional.interpolate(p.unsqueeze(0), scale_factor=1/self.scale, mode='area').squeeze() for p in patches_hq_corrupted]
patches_lq = torch.stack(patches_lq, dim=0)
d = {'LQ': patches_lq, 'GT': patches_hq, 'GT_path': full_path}
return d
def __len__(self):
return len(self.paths_hq)
class MultiscaleTreeNode:
def __init__(self, index, parent, i):
self.index = index
self.parent = parent
self.children = []
# These represent the offset from left and top of the image for the individual patch as a proportion of the entire image.
# Tightly tied to the implementation above for the order in which the patches are pulled from the base image.
lefts = [0, .5, 0, .5]
tops = [0, 0, .5, .5]
self.left = lefts[i]
self.top = tops[i]
def add_child(self, child):
self.children.append(child)
return child
def build_multiscale_patch_index_map(depth):
if depth < 0:
return
root = MultiscaleTreeNode(0, None, 0)
leaves = []
_build_multiscale_patch_index_map(depth-1, 1, root, leaves)
return leaves
def _build_multiscale_patch_index_map(depth, ind, node, leaves):
subnodes = [node.add_child(MultiscaleTreeNode(ind+i, node, i)) for i in range(4)]
ind += 4
if depth == 1:
leaves.extend(subnodes)
else:
for n in subnodes:
ind = _build_multiscale_patch_index_map(depth-1, ind, n, leaves)
return ind
if __name__ == '__main__':
opt = {
'name': 'amalgam',
'paths': ['F:\\4k6k\\datasets\\images\\div2k\\DIV2K_train_HR'],
'num_scales': 4,
'scale': 2,
'hq_tile_size': 128,
'fixed_corruptions': ['jpeg'],
'random_corruptions': ['gaussian_blur', 'motion-blur', 'noise-5'],
'num_corrupts_per_image': 1,
'corruption_blur_scale': 5
}
import torchvision
ds = MultiScaleDataset(opt)
import os
os.makedirs("debug", exist_ok=True)
multiscale_tree = build_multiscale_patch_index_map(4)
for i in range(500, len(ds)):
quadrant=2
print(i)
o = ds[random.randint(0, len(ds))]
tree_ind = random.randint(0, len(multiscale_tree))
for k, v in o.items():
if 'path' in k:
continue
depth = 0
node = multiscale_tree[tree_ind]
#for j, img in enumerate(v):
# torchvision.utils.save_image(img.unsqueeze(0), "debug/%i_%s_%i.png" % (i, k, j))
while node is not None:
torchvision.utils.save_image(v[node.index].unsqueeze(0), "debug/%i_%s_%i.png" % (i, k, depth))
depth += 1
node = node.parent