auto-suggested voice chunk size is based on the total duration of the voice files divided by 10 seconds, added setting to adjust the auto-suggested division factor (a really oddly worded one), because I'm sure people will OOM blindly generating without adjusting this slider

This commit is contained in:
mrq 2023-03-03 21:13:48 +00:00
parent 07163644dd
commit 6d8c2dd459
2 changed files with 37 additions and 17 deletions

View File

@ -454,6 +454,22 @@ def hash_file(path, algo="md5", buffer_size=0):
return "{0}".format(hash.hexdigest()) return "{0}".format(hash.hexdigest())
def update_baseline_for_latents_chunks( voice ):
path = f'{get_voice_dir()}/{voice}/'
if not os.path.isdir(path):
return 1
files = os.listdir(path)
total_duration = 0
for file in files:
if file[-4:] != ".wav":
continue
metadata = torchaudio.info(f'{path}/{file}')
duration = metadata.num_channels * metadata.num_frames / metadata.sample_rate
total_duration += duration
return int(total_duration / args.autocalculate_voice_chunk_duration_size) if total_duration > 0 else 1
def compute_latents(voice, voice_latents_chunks, progress=gr.Progress(track_tqdm=True)): def compute_latents(voice, voice_latents_chunks, progress=gr.Progress(track_tqdm=True)):
global tts global tts
global args global args
@ -1244,6 +1260,7 @@ def setup_args():
'prune-nonfinal-outputs': True, 'prune-nonfinal-outputs': True,
'use-bigvgan-vocoder': True, 'use-bigvgan-vocoder': True,
'concurrency-count': 2, 'concurrency-count': 2,
'autocalculate-voice-chunk-duration-size': 10,
'output-sample-rate': 44100, 'output-sample-rate': 44100,
'output-volume': 1, 'output-volume': 1,
@ -1282,6 +1299,7 @@ def setup_args():
parser.add_argument("--device-override", default=default_arguments['device-override'], help="A device string to override pass through Torch") parser.add_argument("--device-override", default=default_arguments['device-override'], help="A device string to override pass through Torch")
parser.add_argument("--sample-batch-size", default=default_arguments['sample-batch-size'], type=int, help="Sets how many batches to use during the autoregressive samples pass") parser.add_argument("--sample-batch-size", default=default_arguments['sample-batch-size'], type=int, help="Sets how many batches to use during the autoregressive samples pass")
parser.add_argument("--concurrency-count", type=int, default=default_arguments['concurrency-count'], help="How many Gradio events to process at once") parser.add_argument("--concurrency-count", type=int, default=default_arguments['concurrency-count'], help="How many Gradio events to process at once")
parser.add_argument("--autocalculate-voice-chunk-duration-size", type=float, default=default_arguments['autocalculate-voice-chunk-duration-size'], help="Number of seconds to suggest voice chunk size for (for example, 100 seconds of audio at 10 seconds per chunk will suggest 10 chunks)")
parser.add_argument("--output-sample-rate", type=int, default=default_arguments['output-sample-rate'], help="Sample rate to resample the output to (from 24KHz)") parser.add_argument("--output-sample-rate", type=int, default=default_arguments['output-sample-rate'], help="Sample rate to resample the output to (from 24KHz)")
parser.add_argument("--output-volume", type=float, default=default_arguments['output-volume'], help="Adjusts volume of output") parser.add_argument("--output-volume", type=float, default=default_arguments['output-volume'], help="Adjusts volume of output")
@ -1321,7 +1339,7 @@ def setup_args():
return args return args
def update_args( listen, share, check_for_updates, models_from_local_only, low_vram, embed_output_metadata, latents_lean_and_mean, voice_fixer, voice_fixer_use_cuda, force_cpu_for_conditioning_latents, defer_tts_load, prune_nonfinal_outputs, use_bigvgan_vocoder, device_override, sample_batch_size, concurrency_count, output_sample_rate, output_volume, autoregressive_model, whisper_model, whisper_cpp, training_default_halfp, training_default_bnb ): def update_args( listen, share, check_for_updates, models_from_local_only, low_vram, embed_output_metadata, latents_lean_and_mean, voice_fixer, voice_fixer_use_cuda, force_cpu_for_conditioning_latents, defer_tts_load, prune_nonfinal_outputs, use_bigvgan_vocoder, device_override, sample_batch_size, concurrency_count, autocalculate_voice_chunk_duration_size, output_volume, autoregressive_model, whisper_model, whisper_cpp, training_default_halfp, training_default_bnb ):
global args global args
args.listen = listen args.listen = listen
@ -1340,7 +1358,8 @@ def update_args( listen, share, check_for_updates, models_from_local_only, low_v
args.voice_fixer = voice_fixer args.voice_fixer = voice_fixer
args.voice_fixer_use_cuda = voice_fixer_use_cuda args.voice_fixer_use_cuda = voice_fixer_use_cuda
args.concurrency_count = concurrency_count args.concurrency_count = concurrency_count
args.output_sample_rate = output_sample_rate args.output_sample_rate = 44000
args.autocalculate_voice_chunk_duration_size = autocalculate_voice_chunk_duration_size
args.output_volume = output_volume args.output_volume = output_volume
args.autoregressive_model = autoregressive_model args.autoregressive_model = autoregressive_model
@ -1372,6 +1391,7 @@ def save_args_settings():
'voice-fixer-use-cuda': args.voice_fixer_use_cuda, 'voice-fixer-use-cuda': args.voice_fixer_use_cuda,
'concurrency-count': args.concurrency_count, 'concurrency-count': args.concurrency_count,
'output-sample-rate': args.output_sample_rate, 'output-sample-rate': args.output_sample_rate,
'autocalculate-voice-chunk-duration-size': args.autocalculate_voice_chunk_duration_size,
'output-volume': args.output_volume, 'output-volume': args.output_volume,
'autoregressive-model': args.autoregressive_model, 'autoregressive-model': args.autoregressive_model,
@ -1481,7 +1501,7 @@ def load_tts( restart=False, model=None ):
tts = TextToSpeech(minor_optimizations=not args.low_vram, autoregressive_model_path=args.autoregressive_model) tts = TextToSpeech(minor_optimizations=not args.low_vram, autoregressive_model_path=args.autoregressive_model)
except Exception as e: except Exception as e:
tts = TextToSpeech(minor_optimizations=not args.low_vram) tts = TextToSpeech(minor_optimizations=not args.low_vram)
update_autoregressive_model(args.autoregressive_model) load_autoregressive_model(args.autoregressive_model)
if not hasattr(tts, 'autoregressive_model_hash'): if not hasattr(tts, 'autoregressive_model_hash'):
tts.autoregressive_model_hash = hash_file(tts.autoregressive_model_path) tts.autoregressive_model_hash = hash_file(tts.autoregressive_model_path)

View File

@ -385,19 +385,6 @@ def setup_gradio():
refresh_voices = gr.Button(value="Refresh Voice List") refresh_voices = gr.Button(value="Refresh Voice List")
recompute_voice_latents = gr.Button(value="(Re)Compute Voice Latents") recompute_voice_latents = gr.Button(value="(Re)Compute Voice Latents")
def update_baseline_for_latents_chunks( voice ):
path = f'{get_voice_dir()}/{voice}/'
if not os.path.isdir(path):
return 1
files = os.listdir(path)
count = 0
for file in files:
if file[-4:] == ".wav":
count += 1
return count if count > 0 else 1
voice.change( voice.change(
fn=update_baseline_for_latents_chunks, fn=update_baseline_for_latents_chunks,
inputs=voice, inputs=voice,
@ -575,7 +562,7 @@ def setup_gradio():
exec_inputs = exec_inputs + [ exec_inputs = exec_inputs + [
gr.Number(label="Sample Batch Size", precision=0, value=args.sample_batch_size), gr.Number(label="Sample Batch Size", precision=0, value=args.sample_batch_size),
gr.Number(label="Gradio Concurrency Count", precision=0, value=args.concurrency_count), gr.Number(label="Gradio Concurrency Count", precision=0, value=args.concurrency_count),
gr.Number(label="Output Sample Rate", precision=0, value=args.output_sample_rate), gr.Number(label="Auto-Calculate Voice Chunk Duration (in seconds)", precision=0, value=args.autocalculate_voice_chunk_duration_size),
gr.Slider(label="Output Volume", minimum=0, maximum=2, value=args.output_volume), gr.Slider(label="Output Volume", minimum=0, maximum=2, value=args.output_volume),
] ]
@ -594,6 +581,7 @@ def setup_gradio():
inputs=autoregressive_model_dropdown, inputs=autoregressive_model_dropdown,
outputs=None outputs=None
) )
# kill_button = gr.Button(value="Close UI")
def update_model_list_proxy( val ): def update_model_list_proxy( val ):
autoregressive_models = get_autoregressive_models() autoregressive_models = get_autoregressive_models()
@ -814,6 +802,18 @@ def setup_gradio():
outputs=save_yaml_output #console_output outputs=save_yaml_output #console_output
) )
"""
def kill_process():
ui.close()
exit()
kill_button.click(
kill_process,
inputs=None,
outputs=None
)
"""
if os.path.isfile('./config/generate.json'): if os.path.isfile('./config/generate.json'):
ui.load(import_generate_settings, inputs=None, outputs=input_settings) ui.load(import_generate_settings, inputs=None, outputs=input_settings)