167 lines
5.4 KiB
Python
167 lines
5.4 KiB
Python
|
"""resnet in pytorch
|
||
|
|
||
|
|
||
|
|
||
|
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
|
||
|
|
||
|
Deep Residual Learning for Image Recognition
|
||
|
https://arxiv.org/abs/1512.03385v1
|
||
|
"""
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
|
||
|
from trainer.networks import register_model
|
||
|
|
||
|
|
||
|
class BasicBlock(nn.Module):
|
||
|
"""Basic Block for resnet 18 and resnet 34
|
||
|
|
||
|
"""
|
||
|
|
||
|
#BasicBlock and BottleNeck block
|
||
|
#have different output size
|
||
|
#we use class attribute expansion
|
||
|
#to distinct
|
||
|
expansion = 1
|
||
|
|
||
|
def __init__(self, in_channels, out_channels, stride=1):
|
||
|
super().__init__()
|
||
|
|
||
|
#residual function
|
||
|
self.residual_function = nn.Sequential(
|
||
|
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),
|
||
|
nn.BatchNorm2d(out_channels),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.Conv2d(out_channels, out_channels * BasicBlock.expansion, kernel_size=3, padding=1, bias=False),
|
||
|
nn.BatchNorm2d(out_channels * BasicBlock.expansion)
|
||
|
)
|
||
|
|
||
|
#shortcut
|
||
|
self.shortcut = nn.Sequential()
|
||
|
|
||
|
#the shortcut output dimension is not the same with residual function
|
||
|
#use 1*1 convolution to match the dimension
|
||
|
if stride != 1 or in_channels != BasicBlock.expansion * out_channels:
|
||
|
self.shortcut = nn.Sequential(
|
||
|
nn.Conv2d(in_channels, out_channels * BasicBlock.expansion, kernel_size=1, stride=stride, bias=False),
|
||
|
nn.BatchNorm2d(out_channels * BasicBlock.expansion)
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
return nn.ReLU(inplace=True)(self.residual_function(x) + self.shortcut(x))
|
||
|
|
||
|
class BottleNeck(nn.Module):
|
||
|
"""Residual block for resnet over 50 layers
|
||
|
|
||
|
"""
|
||
|
expansion = 4
|
||
|
def __init__(self, in_channels, out_channels, stride=1):
|
||
|
super().__init__()
|
||
|
self.residual_function = nn.Sequential(
|
||
|
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
|
||
|
nn.BatchNorm2d(out_channels),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.Conv2d(out_channels, out_channels, stride=stride, kernel_size=3, padding=1, bias=False),
|
||
|
nn.BatchNorm2d(out_channels),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.Conv2d(out_channels, out_channels * BottleNeck.expansion, kernel_size=1, bias=False),
|
||
|
nn.BatchNorm2d(out_channels * BottleNeck.expansion),
|
||
|
)
|
||
|
|
||
|
self.shortcut = nn.Sequential()
|
||
|
|
||
|
if stride != 1 or in_channels != out_channels * BottleNeck.expansion:
|
||
|
self.shortcut = nn.Sequential(
|
||
|
nn.Conv2d(in_channels, out_channels * BottleNeck.expansion, stride=stride, kernel_size=1, bias=False),
|
||
|
nn.BatchNorm2d(out_channels * BottleNeck.expansion)
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
return nn.ReLU(inplace=True)(self.residual_function(x) + self.shortcut(x))
|
||
|
|
||
|
class ResNet(nn.Module):
|
||
|
|
||
|
def __init__(self, block, num_block, num_classes=100):
|
||
|
super().__init__()
|
||
|
|
||
|
self.in_channels = 32
|
||
|
|
||
|
self.conv1 = nn.Sequential(
|
||
|
nn.Conv2d(3, 32, kernel_size=3, padding=1, bias=False),
|
||
|
nn.BatchNorm2d(32),
|
||
|
nn.ReLU(inplace=True))
|
||
|
#we use a different inputsize than the original paper
|
||
|
#so conv2_x's stride is 1
|
||
|
self.conv2_x = self._make_layer(block, 32, num_block[0], 1)
|
||
|
self.conv3_x = self._make_layer(block, 64, num_block[1], 2)
|
||
|
self.conv4_x = self._make_layer(block, 128, num_block[2], 2)
|
||
|
self.conv5_x = self._make_layer(block, 256, num_block[3], 2)
|
||
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
||
|
self.fc = nn.Linear(256 * block.expansion, num_classes)
|
||
|
|
||
|
def _make_layer(self, block, out_channels, num_blocks, stride):
|
||
|
"""make resnet layers(by layer i didnt mean this 'layer' was the
|
||
|
same as a neuron netowork layer, ex. conv layer), one layer may
|
||
|
contain more than one residual block
|
||
|
|
||
|
Args:
|
||
|
block: block type, basic block or bottle neck block
|
||
|
out_channels: output depth channel number of this layer
|
||
|
num_blocks: how many blocks per layer
|
||
|
stride: the stride of the first block of this layer
|
||
|
|
||
|
Return:
|
||
|
return a resnet layer
|
||
|
"""
|
||
|
|
||
|
# we have num_block blocks per layer, the first block
|
||
|
# could be 1 or 2, other blocks would always be 1
|
||
|
strides = [stride] + [1] * (num_blocks - 1)
|
||
|
layers = []
|
||
|
for stride in strides:
|
||
|
layers.append(block(self.in_channels, out_channels, stride))
|
||
|
self.in_channels = out_channels * block.expansion
|
||
|
|
||
|
return nn.Sequential(*layers)
|
||
|
|
||
|
def forward(self, x):
|
||
|
output = self.conv1(x)
|
||
|
output = self.conv2_x(output)
|
||
|
output = self.conv3_x(output)
|
||
|
output = self.conv4_x(output)
|
||
|
output = self.conv5_x(output)
|
||
|
output = self.avgpool(output)
|
||
|
output = output.view(output.size(0), -1)
|
||
|
output = self.fc(output)
|
||
|
|
||
|
return output
|
||
|
|
||
|
@register_model
|
||
|
def register_cifar_resnet18(opt_net, opt):
|
||
|
""" return a ResNet 18 object
|
||
|
"""
|
||
|
return ResNet(BasicBlock, [2, 2, 2, 2])
|
||
|
|
||
|
def resnet34():
|
||
|
""" return a ResNet 34 object
|
||
|
"""
|
||
|
return ResNet(BasicBlock, [3, 4, 6, 3])
|
||
|
|
||
|
def resnet50():
|
||
|
""" return a ResNet 50 object
|
||
|
"""
|
||
|
return ResNet(BottleNeck, [3, 4, 6, 3])
|
||
|
|
||
|
def resnet101():
|
||
|
""" return a ResNet 101 object
|
||
|
"""
|
||
|
return ResNet(BottleNeck, [3, 4, 23, 3])
|
||
|
|
||
|
def resnet152():
|
||
|
""" return a ResNet 152 object
|
||
|
"""
|
||
|
return ResNet(BottleNeck, [3, 8, 36, 3])
|
||
|
|
||
|
|