DL-Art-School/codes/train.py

510 lines
23 KiB
Python
Raw Normal View History

2019-08-23 13:42:47 +00:00
import os
import math
import argparse
import random
import logging
2020-04-22 06:38:53 +00:00
from tqdm import tqdm
2019-08-23 13:42:47 +00:00
import torch
from data.data_sampler import DistIterSampler
from utils import util, options as option
2019-08-23 13:42:47 +00:00
from data import create_dataloader, create_dataset
from models.ExtensibleTrainer import ExtensibleTrainer
2020-06-18 17:28:55 +00:00
from time import time
2019-08-23 13:42:47 +00:00
def init_dist(backend='nccl', **kwargs):
2020-07-02 21:11:21 +00:00
# These packages have globals that screw with Windows, so only import them if needed.
import torch.distributed as dist
import torch.multiprocessing as mp
2019-08-23 13:42:47 +00:00
"""initialization for distributed training"""
if mp.get_start_method(allow_none=True) != 'spawn':
mp.set_start_method('spawn')
rank = int(os.environ['RANK'])
num_gpus = torch.cuda.device_count()
torch.cuda.set_device(rank % num_gpus)
dist.init_process_group(backend=backend, **kwargs)
2020-06-01 21:09:52 +00:00
2020-10-22 19:27:32 +00:00
def main(opt, launcher='none'):
2019-08-23 13:42:47 +00:00
#### distributed training settings
2020-10-07 02:40:20 +00:00
if len(opt['gpu_ids']) == 1 and torch.cuda.device_count() > 1:
gpu = input('I noticed you have multiple GPUs. Starting two jobs on the same GPU sucks. Please confirm which GPU'
'you want to use. Press enter to use the specified one [%s]' % (opt['gpu_ids']))
if gpu:
opt['gpu_ids'] = [int(gpu)]
2020-10-22 19:27:32 +00:00
if launcher == 'none': # disabled distributed training
2019-08-23 13:42:47 +00:00
opt['dist'] = False
rank = -1
print('Disabled distributed training.')
2019-08-23 13:42:47 +00:00
else:
opt['dist'] = True
init_dist()
world_size = torch.distributed.get_world_size()
rank = torch.distributed.get_rank()
#### loading resume state if exists
if opt['path'].get('resume_state', None):
# distributed resuming: all load into default GPU
device_id = torch.cuda.current_device()
resume_state = torch.load(opt['path']['resume_state'],
map_location=lambda storage, loc: storage.cuda(device_id))
option.check_resume(opt, resume_state['iter']) # check resume options
else:
resume_state = None
#### mkdir and loggers
if rank <= 0: # normal training (rank -1) OR distributed training (rank 0)
if resume_state is None:
util.mkdir_and_rename(
opt['path']['experiments_root']) # rename experiment folder if exists
2020-09-26 04:19:38 +00:00
util.mkdirs((path for key, path in opt['path'].items() if not key == 'experiments_root' and path is not None
2019-08-23 13:42:47 +00:00
and 'pretrain_model' not in key and 'resume' not in key))
# config loggers. Before it, the log will not work
util.setup_logger('base', opt['path']['log'], 'train_' + opt['name'], level=logging.INFO,
screen=True, tofile=True)
logger = logging.getLogger('base')
logger.info(option.dict2str(opt))
# tensorboard logger
if opt['use_tb_logger'] and 'debug' not in opt['name']:
tb_logger_path = os.path.join(opt['path']['experiments_root'], 'tb_logger')
2019-08-23 13:42:47 +00:00
version = float(torch.__version__[0:3])
if version >= 1.1: # PyTorch 1.1
from torch.utils.tensorboard import SummaryWriter
else:
logger.info(
'You are using PyTorch {}. Tensorboard will use [tensorboardX]'.format(version))
from tensorboardX import SummaryWriter
2020-04-30 17:30:55 +00:00
tb_logger = SummaryWriter(log_dir=tb_logger_path)
2019-08-23 13:42:47 +00:00
else:
util.setup_logger('base', opt['path']['log'], 'train', level=logging.INFO, screen=True)
logger = logging.getLogger('base')
# convert to NoneDict, which returns None for missing keys
opt = option.dict_to_nonedict(opt)
#### random seed
seed = opt['train']['manual_seed']
if seed is None:
seed = random.randint(1, 10000)
if rank <= 0:
logger.info('Random seed: {}'.format(seed))
util.set_random_seed(seed)
torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
# torch.autograd.set_detect_anomaly(True)
2019-08-23 13:42:47 +00:00
# Save the compiled opt dict to the global loaded_options variable.
util.loaded_options = opt
2019-08-23 13:42:47 +00:00
#### create train and val dataloader
dataset_ratio = 1 # enlarge the size of each epoch
2019-08-23 13:42:47 +00:00
for phase, dataset_opt in opt['datasets'].items():
if phase == 'train':
train_set = create_dataset(dataset_opt)
train_size = int(math.ceil(len(train_set) / dataset_opt['batch_size']))
total_iters = int(opt['train']['niter'])
total_epochs = int(math.ceil(total_iters / train_size))
if opt['dist']:
train_sampler = DistIterSampler(train_set, world_size, rank, dataset_ratio)
total_epochs = int(math.ceil(total_iters / (train_size * dataset_ratio)))
else:
train_sampler = None
train_loader = create_dataloader(train_set, dataset_opt, opt, train_sampler)
if rank <= 0:
logger.info('Number of train images: {:,d}, iters: {:,d}'.format(
len(train_set), train_size))
logger.info('Total epochs needed: {:d} for iters {:,d}'.format(
total_epochs, total_iters))
elif phase == 'val':
val_set = create_dataset(dataset_opt)
val_loader = create_dataloader(val_set, dataset_opt, opt, None)
if rank <= 0:
logger.info('Number of val images in [{:s}]: {:d}'.format(
dataset_opt['name'], len(val_set)))
else:
raise NotImplementedError('Phase [{:s}] is not recognized.'.format(phase))
assert train_loader is not None
#### create model
model = ExtensibleTrainer(opt)
2019-08-23 13:42:47 +00:00
#### resume training
if resume_state:
logger.info('Resuming training from epoch: {}, iter: {}.'.format(
resume_state['epoch'], resume_state['iter']))
start_epoch = resume_state['epoch']
current_step = resume_state['iter']
2020-09-16 02:57:59 +00:00
model.resume_training(resume_state, 'amp_opt_level' in opt.keys()) # handle optimizers and schedulers
2019-08-23 13:42:47 +00:00
else:
2020-08-16 00:34:59 +00:00
current_step = -1 if 'start_step' not in opt.keys() else opt['start_step']
2019-08-23 13:42:47 +00:00
start_epoch = 0
if 'force_start_step' in opt.keys():
current_step = opt['force_start_step']
2019-08-23 13:42:47 +00:00
#### training
logger.info('Start training from epoch: {:d}, iter: {:d}'.format(start_epoch, current_step))
for epoch in range(start_epoch, total_epochs + 1):
if opt['dist']:
train_sampler.set_epoch(epoch)
2020-04-22 06:38:53 +00:00
tq_ldr = tqdm(train_loader)
2020-06-18 17:28:55 +00:00
_t = time()
_profile = False
for train_data in tq_ldr:
2020-06-18 17:28:55 +00:00
if _profile:
print("Data fetch: %f" % (time() - _t))
_t = time()
2019-08-23 13:42:47 +00:00
current_step += 1
if current_step > total_iters:
break
#### update learning rate
model.update_learning_rate(current_step, warmup_iter=opt['train']['warmup_iter'])
#### training
2020-06-18 17:28:55 +00:00
if _profile:
print("Update LR: %f" % (time() - _t))
_t = time()
2019-08-23 13:42:47 +00:00
model.feed_data(train_data)
model.optimize_parameters(current_step)
2020-06-18 17:28:55 +00:00
if _profile:
print("Model feed + step: %f" % (time() - _t))
_t = time()
2019-08-23 13:42:47 +00:00
#### log
if current_step % opt['logger']['print_freq'] == 0 and rank <= 0:
logs = model.get_current_log(current_step)
2019-08-23 13:42:47 +00:00
message = '[epoch:{:3d}, iter:{:8,d}, lr:('.format(epoch, current_step)
for v in model.get_current_learning_rate():
message += '{:.3e},'.format(v)
message += ')] '
for k, v in logs.items():
if 'histogram' in k:
tb_logger.add_histogram(k, v, current_step)
elif isinstance(v, dict):
tb_logger.add_scalars(k, v, current_step)
else:
message += '{:s}: {:.4e} '.format(k, v)
# tensorboard logger
if opt['use_tb_logger'] and 'debug' not in opt['name']:
tb_logger.add_scalar(k, v, current_step)
logger.info(message)
#### save models and training states
if current_step % opt['logger']['save_checkpoint_freq'] == 0:
if rank <= 0:
logger.info('Saving models and training states.')
model.save(current_step)
model.save_training_state(epoch, current_step)
if 'alt_path' in opt['path'].keys():
import shutil
print("Synchronizing tb_logger to alt_path..")
alt_tblogger = os.path.join(opt['path']['alt_path'], "tb_logger")
shutil.rmtree(alt_tblogger, ignore_errors=True)
shutil.copytree(tb_logger_path, alt_tblogger)
2019-08-23 13:42:47 +00:00
#### validation
if opt['datasets'].get('val', None) and current_step % opt['train']['val_freq'] == 0:
2020-08-26 14:44:22 +00:00
if opt['model'] in ['sr', 'srgan', 'corruptgan', 'spsrgan', 'extensibletrainer'] and rank <= 0: # image restoration validation
2019-08-23 13:42:47 +00:00
avg_psnr = 0.
2020-07-03 21:18:57 +00:00
avg_fea_loss = 0.
2019-08-23 13:42:47 +00:00
idx = 0
2020-06-01 21:09:52 +00:00
colab_imgs_to_copy = []
2020-10-03 17:16:39 +00:00
val_tqdm = tqdm(val_loader)
for val_data in val_tqdm:
2019-08-23 13:42:47 +00:00
idx += 1
for b in range(len(val_data['LQ_path'])):
img_name = os.path.splitext(os.path.basename(val_data['LQ_path'][b]))[0]
img_dir = os.path.join(opt['path']['val_images'], img_name)
util.mkdir(img_dir)
2019-08-23 13:42:47 +00:00
model.feed_data(val_data)
model.test()
2019-08-23 13:42:47 +00:00
visuals = model.get_current_visuals()
if visuals is None:
continue
# calculate PSNR
sr_img = util.tensor2img(visuals['rlt'][b]) # uint8
gt_img = util.tensor2img(visuals['GT'][b]) # uint8
sr_img, gt_img = util.crop_border([sr_img, gt_img], opt['scale'])
avg_psnr += util.calculate_psnr(sr_img, gt_img)
2020-07-03 21:18:57 +00:00
# calculate fea loss
avg_fea_loss += model.compute_fea_loss(visuals['rlt'][b], visuals['GT'][b])
2019-08-23 13:42:47 +00:00
# Save SR images for reference
img_base_name = '{:s}_{:d}.png'.format(img_name, current_step)
save_img_path = os.path.join(img_dir, img_base_name)
util.save_img(sr_img, save_img_path)
2020-10-22 19:27:32 +00:00
avg_psnr = avg_psnr / idx
avg_fea_loss = avg_fea_loss / idx
# log
logger.info('# Validation # PSNR: {:.4e} Fea: {:.4e}'.format(avg_psnr, avg_fea_loss))
# tensorboard logger
if opt['use_tb_logger'] and 'debug' not in opt['name'] and rank <= 0:
tb_logger.add_scalar('val_psnr', avg_psnr, current_step)
tb_logger.add_scalar('val_fea', avg_fea_loss, current_step)
if rank <= 0:
logger.info('Saving the final model.')
model.save('latest')
logger.info('End of training.')
tb_logger.close()
# TODO: Integrate with above main by putting this into an object and splitting up business logic.
def yielding_main(opt, launcher='none', trainer_id=0, all_networks={}):
#### distributed training settings
if len(opt['gpu_ids']) == 1 and torch.cuda.device_count() > 1:
gpu = input('I noticed you have multiple GPUs. Starting two jobs on the same GPU sucks. Please confirm which GPU'
'you want to use. Press enter to use the specified one [%s]' % (opt['gpu_ids']))
if gpu:
opt['gpu_ids'] = [int(gpu)]
if launcher == 'none': # disabled distributed training
opt['dist'] = False
rank = -1
print('Disabled distributed training.')
else:
opt['dist'] = True
init_dist()
world_size = torch.distributed.get_world_size()
rank = torch.distributed.get_rank()
#### loading resume state if exists
if opt['path'].get('resume_state', None):
# distributed resuming: all load into default GPU
device_id = torch.cuda.current_device()
resume_state = torch.load(opt['path']['resume_state'],
map_location=lambda storage, loc: storage.cuda(device_id))
option.check_resume(opt, resume_state['iter']) # check resume options
else:
resume_state = None
#### mkdir and loggers
if rank <= 0: # normal training (rank -1) OR distributed training (rank 0)
if resume_state is None:
util.mkdir_and_rename(
opt['path']['experiments_root']) # rename experiment folder if exists
util.mkdirs((path for key, path in opt['path'].items() if not key == 'experiments_root' and path is not None
and 'pretrain_model' not in key and 'resume' not in key))
# config loggers. Before it, the log will not work
util.setup_logger('base', opt['path']['log'], 'train_' + opt['name'], level=logging.INFO,
screen=True, tofile=True)
logger = logging.getLogger('base')
logger.info(option.dict2str(opt))
# tensorboard logger
if opt['use_tb_logger'] and 'debug' not in opt['name']:
tb_logger_path = os.path.join(opt['path']['experiments_root'], 'tb_logger')
version = float(torch.__version__[0:3])
if version >= 1.1: # PyTorch 1.1
from torch.utils.tensorboard import SummaryWriter
else:
logger.info(
'You are using PyTorch {}. Tensorboard will use [tensorboardX]'.format(version))
from tensorboardX import SummaryWriter
tb_logger = SummaryWriter(log_dir=tb_logger_path)
else:
util.setup_logger('base', opt['path']['log'], 'train', level=logging.INFO, screen=True)
logger = logging.getLogger('base')
# convert to NoneDict, which returns None for missing keys
opt = option.dict_to_nonedict(opt)
#### random seed
seed = opt['train']['manual_seed']
if seed is None:
seed = random.randint(1, 10000)
if rank <= 0:
logger.info('Random seed: {}'.format(seed))
util.set_random_seed(seed)
torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
# torch.autograd.set_detect_anomaly(True)
# Save the compiled opt dict to the global loaded_options variable.
util.loaded_options = opt
#### create train and val dataloader
dataset_ratio = 1 # enlarge the size of each epoch
for phase, dataset_opt in opt['datasets'].items():
if phase == 'train':
train_set = create_dataset(dataset_opt)
train_size = int(math.ceil(len(train_set) / dataset_opt['batch_size']))
total_iters = int(opt['train']['niter'])
total_epochs = int(math.ceil(total_iters / train_size))
if opt['dist']:
train_sampler = DistIterSampler(train_set, world_size, rank, dataset_ratio)
total_epochs = int(math.ceil(total_iters / (train_size * dataset_ratio)))
else:
train_sampler = None
train_loader = create_dataloader(train_set, dataset_opt, opt, train_sampler)
if rank <= 0:
logger.info('Number of train images: {:,d}, iters: {:,d}'.format(
len(train_set), train_size))
logger.info('Total epochs needed: {:d} for iters {:,d}'.format(
total_epochs, total_iters))
elif phase == 'val':
val_set = create_dataset(dataset_opt)
val_loader = create_dataloader(val_set, dataset_opt, opt, None)
if rank <= 0:
logger.info('Number of val images in [{:s}]: {:d}'.format(
dataset_opt['name'], len(val_set)))
else:
raise NotImplementedError('Phase [{:s}] is not recognized.'.format(phase))
assert train_loader is not None
#### create model
model = ExtensibleTrainer(opt, all_networks)
#### resume training
if resume_state:
logger.info('Resuming training from epoch: {}, iter: {}.'.format(
resume_state['epoch'], resume_state['iter']))
start_epoch = resume_state['epoch']
current_step = resume_state['iter']
model.resume_training(resume_state, 'amp_opt_level' in opt.keys()) # handle optimizers and schedulers
else:
current_step = -1 if 'start_step' not in opt.keys() else opt['start_step']
start_epoch = 0
if 'force_start_step' in opt.keys():
current_step = opt['force_start_step']
#### training
logger.info('Start training from epoch: {:d}, iter: {:d}'.format(start_epoch, current_step))
for epoch in range(start_epoch, total_epochs + 1):
if opt['dist']:
train_sampler.set_epoch(epoch)
tq_ldr = tqdm(train_loader, position=trainer_id)
_t = time()
_profile = False
for train_data in tq_ldr:
# Yielding supports multi-modal trainer which operates multiple train.py instances.
yield model
if _profile:
print("Data fetch: %f" % (time() - _t))
_t = time()
current_step += 1
if current_step > total_iters:
break
#### update learning rate
model.update_learning_rate(current_step, warmup_iter=opt['train']['warmup_iter'])
#### training
if _profile:
print("Update LR: %f" % (time() - _t))
_t = time()
model.feed_data(train_data)
model.optimize_parameters(current_step)
if _profile:
print("Model feed + step: %f" % (time() - _t))
_t = time()
#### log
if current_step % opt['logger']['print_freq'] == 0 and rank <= 0:
logs = model.get_current_log(current_step)
message = '[epoch:{:3d}, iter:{:8,d}, lr:('.format(epoch, current_step)
for v in model.get_current_learning_rate():
message += '{:.3e},'.format(v)
message += ')] '
for k, v in logs.items():
if 'histogram' in k:
tb_logger.add_histogram(k, v, current_step)
elif isinstance(v, dict):
tb_logger.add_scalars(k, v, current_step)
else:
message += '{:s}: {:.4e} '.format(k, v)
# tensorboard logger
if opt['use_tb_logger'] and 'debug' not in opt['name']:
tb_logger.add_scalar(k, v, current_step)
logger.info(message)
#### save models and training states
if current_step % opt['logger']['save_checkpoint_freq'] == 0:
if rank <= 0:
logger.info('Saving models and training states.')
model.save(current_step)
model.save_training_state(epoch, current_step)
if 'alt_path' in opt['path'].keys():
import shutil
print("Synchronizing tb_logger to alt_path..")
alt_tblogger = os.path.join(opt['path']['alt_path'], "tb_logger")
shutil.rmtree(alt_tblogger, ignore_errors=True)
shutil.copytree(tb_logger_path, alt_tblogger)
#### validation
if opt['datasets'].get('val', None) and current_step % opt['train']['val_freq'] == 0:
if opt['model'] in ['sr', 'srgan', 'corruptgan', 'spsrgan', 'extensibletrainer'] and rank <= 0: # image restoration validation
avg_psnr = 0.
avg_fea_loss = 0.
idx = 0
val_tqdm = tqdm(val_loader)
for val_data in val_tqdm:
idx += 1
for b in range(len(val_data['LQ_path'])):
img_name = os.path.splitext(os.path.basename(val_data['LQ_path'][b]))[0]
img_dir = os.path.join(opt['path']['val_images'], img_name)
util.mkdir(img_dir)
model.feed_data(val_data)
model.test()
visuals = model.get_current_visuals()
if visuals is None:
continue
# calculate PSNR
sr_img = util.tensor2img(visuals['rlt'][b]) # uint8
gt_img = util.tensor2img(visuals['GT'][b]) # uint8
sr_img, gt_img = util.crop_border([sr_img, gt_img], opt['scale'])
avg_psnr += util.calculate_psnr(sr_img, gt_img)
# calculate fea loss
avg_fea_loss += model.compute_fea_loss(visuals['rlt'][b], visuals['GT'][b])
# Save SR images for reference
img_base_name = '{:s}_{:d}.png'.format(img_name, current_step)
save_img_path = os.path.join(img_dir, img_base_name)
util.save_img(sr_img, save_img_path)
2020-06-01 21:09:52 +00:00
2019-08-23 13:42:47 +00:00
avg_psnr = avg_psnr / idx
2020-07-03 21:18:57 +00:00
avg_fea_loss = avg_fea_loss / idx
2019-08-23 13:42:47 +00:00
# log
2020-07-03 21:18:57 +00:00
logger.info('# Validation # PSNR: {:.4e} Fea: {:.4e}'.format(avg_psnr, avg_fea_loss))
2019-08-23 13:42:47 +00:00
# tensorboard logger
2020-10-03 17:14:13 +00:00
if opt['use_tb_logger'] and 'debug' not in opt['name'] and rank <= 0:
tb_logger.add_scalar('val_psnr', avg_psnr, current_step)
2020-07-03 21:18:57 +00:00
tb_logger.add_scalar('val_fea', avg_fea_loss, current_step)
2019-08-23 13:42:47 +00:00
if rank <= 0:
logger.info('Saving the final model.')
model.save('latest')
logger.info('End of training.')
tb_logger.close()
if __name__ == '__main__':
2020-10-22 19:27:32 +00:00
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_imgset_chained_structured_trans_invariance.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
args = parser.parse_args()
opt = option.parse(args.opt, is_train=True)
main(opt, args.launcher)