262 lines
8.0 KiB
Mathematica
262 lines
8.0 KiB
Mathematica
|
function calculate_PSNR_SSIM()
|
||
|
|
||
|
% GT and SR folder
|
||
|
folder_GT = '/mnt/SSD/xtwang/BasicSR_datasets/val_set5/Set5';
|
||
|
folder_SR = '/home/xtwang/Projects/BasicSR/results/RRDB_PSNR_x4/set5';
|
||
|
scale = 4;
|
||
|
suffix = ''; % suffix for SR images
|
||
|
test_Y = 1; % 1 for test Y channel only; 0 for test RGB channels
|
||
|
if test_Y
|
||
|
fprintf('Tesing Y channel.\n');
|
||
|
else
|
||
|
fprintf('Tesing RGB channels.\n');
|
||
|
end
|
||
|
filepaths = dir(fullfile(folder_GT, '*.png'));
|
||
|
PSNR_all = zeros(1, length(filepaths));
|
||
|
SSIM_all = zeros(1, length(filepaths));
|
||
|
|
||
|
for idx_im = 1:length(filepaths)
|
||
|
im_name = filepaths(idx_im).name;
|
||
|
im_GT = imread(fullfile(folder_GT, im_name));
|
||
|
im_SR = imread(fullfile(folder_SR, [im_name(1:end-4), suffix, '.png']));
|
||
|
|
||
|
if test_Y % evaluate on Y channel in YCbCr color space
|
||
|
if size(im_GT, 3) == 3
|
||
|
im_GT_YCbCr = rgb2ycbcr(im2double(im_GT));
|
||
|
im_GT_in = im_GT_YCbCr(:,:,1);
|
||
|
im_SR_YCbCr = rgb2ycbcr(im2double(im_SR));
|
||
|
im_SR_in = im_SR_YCbCr(:,:,1);
|
||
|
else
|
||
|
im_GT_in = im2double(im_GT);
|
||
|
im_SR_in = im2double(im_SR);
|
||
|
end
|
||
|
else % evaluate on RGB channels
|
||
|
im_GT_in = im2double(im_GT);
|
||
|
im_SR_in = im2double(im_SR);
|
||
|
end
|
||
|
|
||
|
% calculate PSNR and SSIM
|
||
|
PSNR_all(idx_im) = calculate_PSNR(im_GT_in * 255, im_SR_in * 255, scale);
|
||
|
SSIM_all(idx_im) = calculate_SSIM(im_GT_in * 255, im_SR_in * 255, scale);
|
||
|
fprintf('%d.(X%d)%20s: \tPSNR = %f \tSSIM = %f\n', idx_im, scale, im_name(1:end-4), PSNR_all(idx_im), SSIM_all(idx_im));
|
||
|
end
|
||
|
|
||
|
fprintf('\n%26s: \tPSNR = %f \tSSIM = %f\n', '####Average', mean(PSNR_all), mean(SSIM_all));
|
||
|
end
|
||
|
|
||
|
function res = calculate_PSNR(GT, SR, border)
|
||
|
% remove border
|
||
|
GT = GT(border+1:end-border, border+1:end-border, :);
|
||
|
SR = SR(border+1:end-border, border+1:end-border, :);
|
||
|
% calculate PNSR (assume in [0,255])
|
||
|
error = GT(:) - SR(:);
|
||
|
mse = mean(error.^2);
|
||
|
res = 10 * log10(255^2/mse);
|
||
|
end
|
||
|
|
||
|
function res = calculate_SSIM(GT, SR, border)
|
||
|
GT = GT(border+1:end-border, border+1:end-border, :);
|
||
|
SR = SR(border+1:end-border, border+1:end-border, :);
|
||
|
% calculate SSIM
|
||
|
mssim = zeros(1, size(SR, 3));
|
||
|
for i = 1:size(SR,3)
|
||
|
[mssim(i), ~] = ssim_index(GT(:,:,i), SR(:,:,i));
|
||
|
end
|
||
|
res = mean(mssim);
|
||
|
end
|
||
|
|
||
|
function [mssim, ssim_map] = ssim_index(img1, img2, K, window, L)
|
||
|
|
||
|
%========================================================================
|
||
|
%SSIM Index, Version 1.0
|
||
|
%Copyright(c) 2003 Zhou Wang
|
||
|
%All Rights Reserved.
|
||
|
%
|
||
|
%The author is with Howard Hughes Medical Institute, and Laboratory
|
||
|
%for Computational Vision at Center for Neural Science and Courant
|
||
|
%Institute of Mathematical Sciences, New York University.
|
||
|
%
|
||
|
%----------------------------------------------------------------------
|
||
|
%Permission to use, copy, or modify this software and its documentation
|
||
|
%for educational and research purposes only and without fee is hereby
|
||
|
%granted, provided that this copyright notice and the original authors'
|
||
|
%names appear on all copies and supporting documentation. This program
|
||
|
%shall not be used, rewritten, or adapted as the basis of a commercial
|
||
|
%software or hardware product without first obtaining permission of the
|
||
|
%authors. The authors make no representations about the suitability of
|
||
|
%this software for any purpose. It is provided "as is" without express
|
||
|
%or implied warranty.
|
||
|
%----------------------------------------------------------------------
|
||
|
%
|
||
|
%This is an implementation of the algorithm for calculating the
|
||
|
%Structural SIMilarity (SSIM) index between two images. Please refer
|
||
|
%to the following paper:
|
||
|
%
|
||
|
%Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image
|
||
|
%quality assessment: From error measurement to structural similarity"
|
||
|
%IEEE Transactios on Image Processing, vol. 13, no. 1, Jan. 2004.
|
||
|
%
|
||
|
%Kindly report any suggestions or corrections to zhouwang@ieee.org
|
||
|
%
|
||
|
%----------------------------------------------------------------------
|
||
|
%
|
||
|
%Input : (1) img1: the first image being compared
|
||
|
% (2) img2: the second image being compared
|
||
|
% (3) K: constants in the SSIM index formula (see the above
|
||
|
% reference). defualt value: K = [0.01 0.03]
|
||
|
% (4) window: local window for statistics (see the above
|
||
|
% reference). default widnow is Gaussian given by
|
||
|
% window = fspecial('gaussian', 11, 1.5);
|
||
|
% (5) L: dynamic range of the images. default: L = 255
|
||
|
%
|
||
|
%Output: (1) mssim: the mean SSIM index value between 2 images.
|
||
|
% If one of the images being compared is regarded as
|
||
|
% perfect quality, then mssim can be considered as the
|
||
|
% quality measure of the other image.
|
||
|
% If img1 = img2, then mssim = 1.
|
||
|
% (2) ssim_map: the SSIM index map of the test image. The map
|
||
|
% has a smaller size than the input images. The actual size:
|
||
|
% size(img1) - size(window) + 1.
|
||
|
%
|
||
|
%Default Usage:
|
||
|
% Given 2 test images img1 and img2, whose dynamic range is 0-255
|
||
|
%
|
||
|
% [mssim ssim_map] = ssim_index(img1, img2);
|
||
|
%
|
||
|
%Advanced Usage:
|
||
|
% User defined parameters. For example
|
||
|
%
|
||
|
% K = [0.05 0.05];
|
||
|
% window = ones(8);
|
||
|
% L = 100;
|
||
|
% [mssim ssim_map] = ssim_index(img1, img2, K, window, L);
|
||
|
%
|
||
|
%See the results:
|
||
|
%
|
||
|
% mssim %Gives the mssim value
|
||
|
% imshow(max(0, ssim_map).^4) %Shows the SSIM index map
|
||
|
%
|
||
|
%========================================================================
|
||
|
|
||
|
|
||
|
if (nargin < 2 || nargin > 5)
|
||
|
ssim_index = -Inf;
|
||
|
ssim_map = -Inf;
|
||
|
return;
|
||
|
end
|
||
|
|
||
|
if (size(img1) ~= size(img2))
|
||
|
ssim_index = -Inf;
|
||
|
ssim_map = -Inf;
|
||
|
return;
|
||
|
end
|
||
|
|
||
|
[M, N] = size(img1);
|
||
|
|
||
|
if (nargin == 2)
|
||
|
if ((M < 11) || (N < 11))
|
||
|
ssim_index = -Inf;
|
||
|
ssim_map = -Inf;
|
||
|
return
|
||
|
end
|
||
|
window = fspecial('gaussian', 11, 1.5); %
|
||
|
K(1) = 0.01; % default settings
|
||
|
K(2) = 0.03; %
|
||
|
L = 255; %
|
||
|
end
|
||
|
|
||
|
if (nargin == 3)
|
||
|
if ((M < 11) || (N < 11))
|
||
|
ssim_index = -Inf;
|
||
|
ssim_map = -Inf;
|
||
|
return
|
||
|
end
|
||
|
window = fspecial('gaussian', 11, 1.5);
|
||
|
L = 255;
|
||
|
if (length(K) == 2)
|
||
|
if (K(1) < 0 || K(2) < 0)
|
||
|
ssim_index = -Inf;
|
||
|
ssim_map = -Inf;
|
||
|
return;
|
||
|
end
|
||
|
else
|
||
|
ssim_index = -Inf;
|
||
|
ssim_map = -Inf;
|
||
|
return;
|
||
|
end
|
||
|
end
|
||
|
|
||
|
if (nargin == 4)
|
||
|
[H, W] = size(window);
|
||
|
if ((H*W) < 4 || (H > M) || (W > N))
|
||
|
ssim_index = -Inf;
|
||
|
ssim_map = -Inf;
|
||
|
return
|
||
|
end
|
||
|
L = 255;
|
||
|
if (length(K) == 2)
|
||
|
if (K(1) < 0 || K(2) < 0)
|
||
|
ssim_index = -Inf;
|
||
|
ssim_map = -Inf;
|
||
|
return;
|
||
|
end
|
||
|
else
|
||
|
ssim_index = -Inf;
|
||
|
ssim_map = -Inf;
|
||
|
return;
|
||
|
end
|
||
|
end
|
||
|
|
||
|
if (nargin == 5)
|
||
|
[H, W] = size(window);
|
||
|
if ((H*W) < 4 || (H > M) || (W > N))
|
||
|
ssim_index = -Inf;
|
||
|
ssim_map = -Inf;
|
||
|
return
|
||
|
end
|
||
|
if (length(K) == 2)
|
||
|
if (K(1) < 0 || K(2) < 0)
|
||
|
ssim_index = -Inf;
|
||
|
ssim_map = -Inf;
|
||
|
return;
|
||
|
end
|
||
|
else
|
||
|
ssim_index = -Inf;
|
||
|
ssim_map = -Inf;
|
||
|
return;
|
||
|
end
|
||
|
end
|
||
|
|
||
|
C1 = (K(1)*L)^2;
|
||
|
C2 = (K(2)*L)^2;
|
||
|
window = window/sum(sum(window));
|
||
|
img1 = double(img1);
|
||
|
img2 = double(img2);
|
||
|
|
||
|
mu1 = filter2(window, img1, 'valid');
|
||
|
mu2 = filter2(window, img2, 'valid');
|
||
|
mu1_sq = mu1.*mu1;
|
||
|
mu2_sq = mu2.*mu2;
|
||
|
mu1_mu2 = mu1.*mu2;
|
||
|
sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq;
|
||
|
sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq;
|
||
|
sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2;
|
||
|
|
||
|
if (C1 > 0 && C2 > 0)
|
||
|
ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2));
|
||
|
else
|
||
|
numerator1 = 2*mu1_mu2 + C1;
|
||
|
numerator2 = 2*sigma12 + C2;
|
||
|
denominator1 = mu1_sq + mu2_sq + C1;
|
||
|
denominator2 = sigma1_sq + sigma2_sq + C2;
|
||
|
ssim_map = ones(size(mu1));
|
||
|
index = (denominator1.*denominator2 > 0);
|
||
|
ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index));
|
||
|
index = (denominator1 ~= 0) & (denominator2 == 0);
|
||
|
ssim_map(index) = numerator1(index)./denominator1(index);
|
||
|
end
|
||
|
|
||
|
mssim = mean2(ssim_map);
|
||
|
|
||
|
end
|