DL-Art-School/codes/scripts/extract_subimages.py

187 lines
7.4 KiB
Python
Raw Normal View History

2019-08-23 13:42:47 +00:00
"""A multi-thread tool to crop large images to sub-images for faster IO."""
import os
import os.path as osp
import sys
from multiprocessing import Pool
import numpy as np
import cv2
from PIL import Image
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from utils.util import ProgressBar # noqa: E402
import data.util as data_util # noqa: E402
def main():
2020-05-15 02:45:38 +00:00
mode = 'single' # single (one input folder) | pair (extract corresponding GT and LR pairs)
2020-05-27 14:04:47 +00:00
split_img = False
2019-08-23 13:42:47 +00:00
opt = {}
opt['n_thread'] = 20
opt['compression_level'] = 90
2019-08-23 13:42:47 +00:00
# CV_IMWRITE_PNG_COMPRESSION from 0 to 9. A higher value means a smaller size and longer
# compression time. If read raw images during training, use 0 for faster IO speed.
if mode == 'single':
full_multiplier = .25
opt['input_folder'] = 'F:\\4k6k\\datasets\\images\\goodeats\\hq\\new_season\\lr_hr_enc\\lr\\images'
opt['save_folder'] = 'F:\\4k6k\\datasets\\images\\goodeats\\hq\\new_season\\lr_hr_enc\\lr\\images_tiled'
opt['crop_sz'] = int(256 * full_multiplier) # the size of each sub-image
opt['step'] = int(128 * full_multiplier) # step of the sliding crop window
opt['thres_sz'] = int(64 * full_multiplier) # size threshold
opt['image_minimum_size_threshold'] = int(1024 * full_multiplier) # Minimum size of input image in height dim. Images under this size will not be processed.
opt['resize_final_img'] = .5
2020-07-04 19:22:50 +00:00
opt['only_resize'] = False
2020-05-24 03:07:41 +00:00
extract_single(opt, split_img)
2019-08-23 13:42:47 +00:00
elif mode == 'pair':
2020-04-22 06:38:53 +00:00
GT_folder = '../../datasets/div2k/DIV2K_train_HR'
LR_folder = '../../datasets/div2k/DIV2K_train_LR_bicubic/X4'
save_GT_folder = '../../datasets/div2k/DIV2K800_sub'
save_LR_folder = '../../datasets/div2k/DIV2K800_sub_bicLRx4'
2019-08-23 13:42:47 +00:00
scale_ratio = 4
crop_sz = 480 # the size of each sub-image (GT)
step = 240 # step of the sliding crop window (GT)
thres_sz = 48 # size threshold
########################################################################
# check that all the GT and LR images have correct scale ratio
img_GT_list = data_util._get_paths_from_images(GT_folder)
img_LR_list = data_util._get_paths_from_images(LR_folder)
assert len(img_GT_list) == len(img_LR_list), 'different length of GT_folder and LR_folder.'
for path_GT, path_LR in zip(img_GT_list, img_LR_list):
img_GT = Image.open(path_GT)
img_LR = Image.open(path_LR)
w_GT, h_GT = img_GT.size
w_LR, h_LR = img_LR.size
assert w_GT / w_LR == scale_ratio, 'GT width [{:d}] is not {:d}X as LR weight [{:d}] for {:s}.'.format( # noqa: E501
w_GT, scale_ratio, w_LR, path_GT)
assert w_GT / w_LR == scale_ratio, 'GT width [{:d}] is not {:d}X as LR weight [{:d}] for {:s}.'.format( # noqa: E501
w_GT, scale_ratio, w_LR, path_GT)
# check crop size, step and threshold size
assert crop_sz % scale_ratio == 0, 'crop size is not {:d}X multiplication.'.format(
scale_ratio)
assert step % scale_ratio == 0, 'step is not {:d}X multiplication.'.format(scale_ratio)
assert thres_sz % scale_ratio == 0, 'thres_sz is not {:d}X multiplication.'.format(
scale_ratio)
print('process GT...')
opt['input_folder'] = GT_folder
opt['save_folder'] = save_GT_folder
opt['crop_sz'] = crop_sz
opt['step'] = step
opt['thres_sz'] = thres_sz
2020-05-24 03:07:41 +00:00
extract_single(opt)
2019-08-23 13:42:47 +00:00
print('process LR...')
opt['input_folder'] = LR_folder
opt['save_folder'] = save_LR_folder
opt['crop_sz'] = crop_sz // scale_ratio
opt['step'] = step // scale_ratio
opt['thres_sz'] = thres_sz // scale_ratio
2020-05-24 03:07:41 +00:00
extract_single(opt)
2019-08-23 13:42:47 +00:00
assert len(data_util._get_paths_from_images(save_GT_folder)) == len(
data_util._get_paths_from_images(
save_LR_folder)), 'different length of save_GT_folder and save_LR_folder.'
else:
raise ValueError('Wrong mode.')
2020-05-24 03:07:41 +00:00
def extract_single(opt, split_img=False):
2019-08-23 13:42:47 +00:00
input_folder = opt['input_folder']
save_folder = opt['save_folder']
if not osp.exists(save_folder):
os.makedirs(save_folder)
print('mkdir [{:s}] ...'.format(save_folder))
img_list = data_util._get_paths_from_images(input_folder)
def update(arg):
pbar.update(arg)
pbar = ProgressBar(len(img_list))
pool = Pool(opt['n_thread']) if opt['n_thread'] >= 1 else None
2019-08-23 13:42:47 +00:00
for path in img_list:
# If this fails, change it and the imwrite below to the write extension.
assert ".jpg" in path
if pool:
if split_img:
pool.apply_async(worker, args=(path, opt, True, False), callback=update)
pool.apply_async(worker, args=(path, opt, True, True), callback=update)
else:
pool.apply_async(worker, args=(path, opt), callback=update)
2020-05-24 03:07:41 +00:00
else:
assert not split_img
worker(path, opt)
2019-08-23 13:42:47 +00:00
pool.close()
pool.join()
print('All subprocesses done.')
2020-05-24 03:07:41 +00:00
def worker(path, opt, split_mode=False, left_img=True):
2019-08-23 13:42:47 +00:00
crop_sz = opt['crop_sz']
step = opt['step']
thres_sz = opt['thres_sz']
2020-06-23 15:39:51 +00:00
only_resize = opt['only_resize']
2019-08-23 13:42:47 +00:00
img_name = osp.basename(path)
img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
n_channels = len(img.shape)
if n_channels == 2:
h, w = img.shape
elif n_channels == 3:
h, w, c = img.shape
else:
raise ValueError('Wrong image shape - {}'.format(n_channels))
2020-05-24 03:07:41 +00:00
# Uncomment to filter any image that doesnt meet a threshold size.
if min(h,w) < opt['image_minimum_size_threshold']:
2020-05-24 13:43:23 +00:00
return
2020-05-24 03:07:41 +00:00
left = 0
right = w
if split_mode:
if left_img:
left = 0
right = int(w/2)
else:
left = int(w/2)
right = w
w = int(w/2)
img = img[:, left:right]
2019-08-23 13:42:47 +00:00
h_space = np.arange(0, h - crop_sz + 1, step)
if h - (h_space[-1] + crop_sz) > thres_sz:
h_space = np.append(h_space, h - crop_sz)
w_space = np.arange(0, w - crop_sz + 1, step)
if w - (w_space[-1] + crop_sz) > thres_sz:
w_space = np.append(w_space, w - crop_sz)
2020-06-23 15:39:51 +00:00
dsize = None
if only_resize:
dsize = (crop_sz, crop_sz)
if h < w:
h_space = [0]
w_space = [(w - h) // 2]
crop_sz = h
else:
h_space = [(h - w) // 2]
w_space = [0]
crop_sz = w
2019-08-23 13:42:47 +00:00
index = 0
for x in h_space:
for y in w_space:
index += 1
if n_channels == 2:
crop_img = img[x:x + crop_sz, y:y + crop_sz]
else:
crop_img = img[x:x + crop_sz, y:y + crop_sz, :]
crop_img = np.ascontiguousarray(crop_img)
2020-06-23 15:39:51 +00:00
if 'resize_final_img' in opt.keys():
# Resize too.
resize_factor = opt['resize_final_img']
if dsize is None:
dsize = (int(crop_img.shape[0] * resize_factor), int(crop_img.shape[1] * resize_factor))
crop_img = cv2.resize(crop_img, dsize, interpolation = cv2.INTER_AREA)
2019-08-23 13:42:47 +00:00
cv2.imwrite(
osp.join(opt['save_folder'],
img_name.replace('.jpg', '_l{:05d}_s{:03d}.jpg'.format(left, index))), crop_img,
[cv2.IMWRITE_JPEG_QUALITY, opt['compression_level']])
2019-08-23 13:42:47 +00:00
return 'Processing {:s} ...'.format(img_name)
if __name__ == '__main__':
main()