DL-Art-School/codes/models/byol/byol_for_semantic_chaining.py

293 lines
11 KiB
Python
Raw Normal View History

import copy
import os
import random
from functools import wraps
import kornia.augmentation as augs
import torch
import torch.nn.functional as F
import torchvision
from PIL import Image
from kornia import filters, apply_hflip
from torch import nn
from torchvision.transforms import ToTensor
from data.byol_attachment import RandomApply
from trainer.networks import register_model, create_model
from utils.util import checkpoint, opt_get
def default(val, def_val):
return def_val if val is None else val
def flatten(t):
return t.reshape(t.shape[0], -1)
def singleton(cache_key):
def inner_fn(fn):
@wraps(fn)
def wrapper(self, *args, **kwargs):
instance = getattr(self, cache_key)
if instance is not None:
return instance
instance = fn(self, *args, **kwargs)
setattr(self, cache_key, instance)
return instance
return wrapper
return inner_fn
def get_module_device(module):
return next(module.parameters()).device
def set_requires_grad(model, val):
for p in model.parameters():
p.requires_grad = val
2021-04-25 17:45:20 +00:00
# Specialized augmentor class that applies a set of image transformations on points as well, allowing one to track
# where a point in the src image is located in the dest image. Restricts transformation such that this is possible.
class PointwiseAugmentor(nn.Module):
def __init__(self, img_size=224):
super().__init__()
self.jitter = RandomApply(augs.ColorJitter(0.8, 0.8, 0.8, 0.2), p=0.8)
self.gray = augs.RandomGrayscale(p=0.2)
self.blur = RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1)
self.rrc = augs.RandomResizedCrop((img_size, img_size), same_on_batch=True)
# Given a point in the source image, returns the same point in the source image, given the kornia RRC params.
def rrc_on_point(self, src_point, params):
dh, dw = params['dst'][:,2,1]-params['dst'][:,0,1], params['dst'][:,2,0] - params['dst'][:,0,0]
sh, sw = params['src'][:,2,1]-params['src'][:,0,1], params['src'][:,2,0] - params['src'][:,0,0]
scale_h, scale_w = sh.float() / dh.float(), sw.float() / dw.float()
t, l = src_point[0] - params['src'][0,0,1], src_point[1] - params['src'][0,0,0]
t = (t.float() / scale_h[0]).long()
l = (l.float() / scale_w[0]).long()
return torch.stack([t,l])
def flip_on_point(self, pt, input):
t, l = pt[0], pt[1]
center = input.shape[-1] // 2
return t, 2 * center - l
def forward(self, x, point):
d = self.jitter(x)
d = self.gray(d)
will_flip = random.random() > .5
if will_flip:
d = apply_hflip(d)
point = self.flip_on_point(point, x)
d = self.blur(d)
invalid = True
while invalid:
params = self.rrc.generate_parameters(d.shape)
potential = self.rrc_on_point(point, params)
# '10' is an arbitrary number: we want to provide some margin. Making predictions at the very edge of an image is not very useful.
if potential[0] <= 10 or potential[1] <= 10 or potential[0] > x.shape[-2]-10 or potential[1] > x.shape[-1]-10:
continue
d = self.rrc(d, params=params)
point = potential
invalid = False
return d, point
# loss fn
def loss_fn(x, y):
x = F.normalize(x, dim=-1, p=2)
y = F.normalize(y, dim=-1, p=2)
return 2 - 2 * (x * y).sum(dim=-1)
# exponential moving average
class EMA():
def __init__(self, beta):
super().__init__()
self.beta = beta
def update_average(self, old, new):
if old is None:
return new
return old * self.beta + (1 - self.beta) * new
def update_moving_average(ema_updater, ma_model, current_model):
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
old_weight, up_weight = ma_params.data, current_params.data
ma_params.data = ema_updater.update_average(old_weight, up_weight)
# MLP class for projector and predictor
class MLP(nn.Module):
def __init__(self, dim, projection_size, hidden_size=4096):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_size),
nn.BatchNorm1d(hidden_size),
nn.ReLU(inplace=True),
nn.Linear(hidden_size, projection_size)
)
def forward(self, x):
x = flatten(x)
return self.net(x)
# a wrapper class for the base neural network
# will manage the interception of the hidden layer output
# and pipe it into the projecter and predictor nets
class NetWrapper(nn.Module):
def __init__(self, net, latent_size, projection_size, projection_hidden_size):
super().__init__()
self.net = net
self.latent_size = latent_size
self.projection_size = projection_size
self.projection_hidden_size = projection_hidden_size
self.projector = MLP(latent_size, self.projection_size, self.projection_hidden_size)
def forward(self, **kwargs):
representation = self.net(**kwargs)
projection = checkpoint(self.projector, representation)
return projection
class BYOL(nn.Module):
def __init__(
self,
net,
image_size,
latent_size,
projection_size=256,
projection_hidden_size=4096,
moving_average_decay=0.99,
use_momentum=True,
contrastive=False,
):
super().__init__()
self.online_encoder = NetWrapper(net, latent_size, projection_size, projection_hidden_size)
2021-04-25 17:45:20 +00:00
self.aug = PointwiseAugmentor(image_size)
self.use_momentum = use_momentum
self.contrastive = contrastive
self.target_ema_updater = EMA(moving_average_decay)
self.online_predictor = MLP(projection_size, projection_size, projection_hidden_size)
self.target_encoder = None
self._get_target_encoder()
@singleton('target_encoder')
def _get_target_encoder(self):
target_encoder = copy.deepcopy(self.online_encoder)
set_requires_grad(target_encoder, False)
for p in target_encoder.parameters():
p.DO_NOT_TRAIN = True
return target_encoder
def reset_moving_average(self):
del self.target_encoder
self.target_encoder = None
def update_for_step(self, step, __):
assert self.use_momentum, 'you do not need to update the moving average, since you have turned off momentum for the target encoder'
assert self.target_encoder is not None, 'target encoder has not been created yet'
update_moving_average(self.target_ema_updater, self.target_encoder, self.online_encoder)
def get_debug_values(self, step, __):
# In the BYOL paper, this is made to increase over time. Not yet implemented, but still logging the value.
dbg = {'target_ema_beta': self.target_ema_updater.beta}
if self.contrastive and hasattr(self, 'logs_closs'):
dbg['contrastive_distance'] = self.logs_closs
dbg['byol_distance'] = self.logs_loss
return dbg
def visual_dbg(self, step, path):
2021-04-25 17:45:20 +00:00
torchvision.utils.save_image(self.im1.cpu().float(), os.path.join(path, "%i_image1.png" % (step,)))
torchvision.utils.save_image(self.im2.cpu().float(), os.path.join(path, "%i_image2.png" % (step,)))
def get_predictions_and_projections(self, image):
2021-04-25 17:45:20 +00:00
_, _, h, w = image.shape
point = torch.randint(h//8, 7*h//8, (2,)).long().to(image.device)
2021-04-25 17:45:20 +00:00
image_one, pt_one = self.aug(image, point)
image_two, pt_two = self.aug(image, point)
# Keep copies on hand for visual_dbg.
self.im1 = image_one.detach().clone()
self.im1[:,:,pt_one[0]-3:pt_one[0]+3,pt_one[1]-3:pt_one[1]+3] = 1
self.im2 = image_two.detach().clone()
self.im2[:,:,pt_two[0]-3:pt_two[0]+3,pt_two[1]-3:pt_two[1]+3] = 1
online_proj_one = self.online_encoder(img=image_one, pos=pt_one)
online_proj_two = self.online_encoder(img=image_two, pos=pt_two)
online_pred_one = self.online_predictor(online_proj_one)
online_pred_two = self.online_predictor(online_proj_two)
with torch.no_grad():
target_encoder = self._get_target_encoder() if self.use_momentum else self.online_encoder
target_proj_one = target_encoder(img=image_one, pos=pt_one).detach()
target_proj_two = target_encoder(img=image_two, pos=pt_two).detach()
return online_pred_one, online_pred_two, target_proj_one, target_proj_two
def forward_normal(self, image):
online_pred_one, online_pred_two, target_proj_one, target_proj_two = self.get_predictions_and_projections(image)
loss_one = loss_fn(online_pred_one, target_proj_two.detach())
loss_two = loss_fn(online_pred_two, target_proj_one.detach())
loss = loss_one + loss_two
return loss.mean()
def forward_contrastive(self, image):
online_pred_one_1, online_pred_two_1, target_proj_one_1, target_proj_two_1 = self.get_predictions_and_projections(image)
loss_one = loss_fn(online_pred_one_1, target_proj_two_1.detach())
loss_two = loss_fn(online_pred_two_1, target_proj_one_1.detach())
loss = loss_one + loss_two
online_pred_one_2, online_pred_two_2, target_proj_one_2, target_proj_two_2 = self.get_predictions_and_projections(image)
loss_one = loss_fn(online_pred_one_2, target_proj_two_2.detach())
loss_two = loss_fn(online_pred_two_2, target_proj_one_2.detach())
loss = (loss + loss_one + loss_two).mean()
contrastive_loss = torch.cat([loss_fn(online_pred_one_1, target_proj_two_2),
loss_fn(online_pred_two_1, target_proj_one_2),
loss_fn(online_pred_one_2, target_proj_two_1),
loss_fn(online_pred_two_2, target_proj_one_1)], dim=0)
k = contrastive_loss.shape[0] // 2 # Take half of the total contrastive loss predictions.
contrastive_loss = torch.topk(contrastive_loss, k, dim=0).values.mean()
self.logs_loss = loss.detach()
self.logs_closs = contrastive_loss.detach()
return loss - contrastive_loss
def forward(self, image):
if self.contrastive:
return self.forward_contrastive(image)
else:
return self.forward_normal(image)
if __name__ == '__main__':
2021-04-25 17:45:20 +00:00
pa = PointwiseAugmentor(256)
for j in range(100):
t = ToTensor()(Image.open('E:\\4k6k\\datasets\\ns_images\\imagesets\\000001_152761.jpg')).unsqueeze(0).repeat(8,1,1,1)
p = torch.randint(50,180,(2,))
augmented, dp = pa(t, p)
t, p = pa(t, p)
t[:,:,p[0]-3:p[0]+3,p[1]-3:p[1]+3] = 0
torchvision.utils.save_image(t, f"{j}_src.png")
augmented[:,:,dp[0]-3:dp[0]+3,dp[1]-3:dp[1]+3] = 0
torchvision.utils.save_image(augmented, f"{j}_dst.png")
@register_model
2021-04-25 17:45:20 +00:00
def register_pixel_local_byol(opt_net, opt):
subnet = create_model(opt, opt_net['subnet'])
return BYOL(subnet, opt_net['image_size'], opt_net['latent_size'], contrastive=opt_net['contrastive'])