2022-05-27 15:49:10 +00:00
import torch
import torch . nn as nn
import torch . nn . functional as F
from models . diffusion . nn import timestep_embedding , normalization , zero_module , conv_nd , linear
from models . diffusion . unet_diffusion import TimestepEmbedSequential , TimestepBlock
from models . lucidrains . x_transformers import Encoder , Attention , FeedForward , RMSScaleShiftNorm , RotaryEmbedding
from trainer . networks import register_model
from utils . util import checkpoint
def is_latent ( t ) :
return t . dtype == torch . float
def is_sequence ( t ) :
return t . dtype == torch . long
class MultiGroupEmbedding ( nn . Module ) :
def __init__ ( self , tokens , groups , dim ) :
super ( ) . __init__ ( )
self . m = nn . ModuleList ( [ nn . Embedding ( tokens , dim / / groups ) for _ in range ( groups ) ] )
def forward ( self , x ) :
h = [ embedding ( x [ : , : , i ] ) for i , embedding in enumerate ( self . m ) ]
return torch . cat ( h , dim = - 1 )
class TimestepRotaryEmbedSequential ( nn . Sequential , TimestepBlock ) :
def forward ( self , x , emb , rotary_emb ) :
for layer in self :
if isinstance ( layer , TimestepBlock ) :
x = layer ( x , emb , rotary_emb )
else :
x = layer ( x , rotary_emb )
return x
class AttentionBlock ( TimestepBlock ) :
def __init__ ( self , dim , heads , dropout ) :
super ( ) . __init__ ( )
self . attn = Attention ( dim , heads = heads , causal = False , dropout = dropout , zero_init_output = False )
self . ff = FeedForward ( dim , mult = 1 , dropout = dropout , zero_init_output = True )
self . rms_scale_norm = RMSScaleShiftNorm ( dim )
def forward ( self , x , timestep_emb , rotary_emb ) :
h = self . rms_scale_norm ( x , norm_scale_shift_inp = timestep_emb )
h , _ , _ , _ = checkpoint ( self . attn , h , None , None , None , None , None , rotary_emb )
h = checkpoint ( self . ff , h )
return h + x
class TransformerDiffusion ( nn . Module ) :
"""
A diffusion model composed entirely of stacks of transformer layers . Why would you do it any other way ?
"""
def __init__ (
self ,
model_channels = 512 ,
num_layers = 8 ,
in_channels = 256 ,
in_latent_channels = 512 ,
clvp_in_dim = 768 ,
rotary_emb_dim = 32 ,
token_count = 8 ,
in_groups = None ,
2022-05-27 17:12:03 +00:00
types = 2 ,
2022-05-27 15:49:10 +00:00
out_channels = 512 , # mean and variance
dropout = 0 ,
use_fp16 = False ,
# Parameters for regularization.
unconditioned_percentage = .1 , # This implements a mechanism similar to what is used in classifier-free training.
) :
super ( ) . __init__ ( )
self . in_channels = in_channels
self . model_channels = model_channels
self . out_channels = out_channels
self . dropout = dropout
self . unconditioned_percentage = unconditioned_percentage
self . enable_fp16 = use_fp16
heads = model_channels / / 64
self . inp_block = conv_nd ( 1 , in_channels , model_channels , 3 , 1 , 1 )
self . time_embed = nn . Sequential (
linear ( model_channels , model_channels ) ,
nn . SiLU ( ) ,
linear ( model_channels , model_channels ) ,
)
self . conditioning_embedder = nn . Sequential ( nn . Conv1d ( in_channels , model_channels / / 2 , 3 , padding = 1 , stride = 2 ) ,
nn . Conv1d ( model_channels / / 2 , model_channels , 3 , padding = 1 , stride = 2 ) )
self . conditioning_encoder = Encoder (
dim = model_channels ,
depth = 4 ,
heads = heads ,
ff_dropout = dropout ,
attn_dropout = dropout ,
use_rmsnorm = True ,
ff_glu = True ,
rotary_pos_emb = True ,
)
self . clvp_encoder = nn . Linear ( clvp_in_dim , model_channels )
2022-05-27 17:19:30 +00:00
self . type_embedding = nn . Embedding ( types , model_channels )
2022-05-27 15:49:10 +00:00
# Either code_converter or latent_converter is used, depending on what type of conditioning data is fed.
# This model is meant to be able to be trained on both for efficiency purposes - it is far less computationally
# complex to generate tokens, while generating latents will normally mean propagating through a deep autoregressive
# transformer network.
if in_groups is None :
self . embeddings = nn . Embedding ( token_count , model_channels )
else :
self . embeddings = MultiGroupEmbedding ( token_count , in_groups , model_channels )
self . latent_conditioner = nn . Sequential (
nn . Conv1d ( in_latent_channels , model_channels , 3 , padding = 1 ) ,
Encoder (
dim = model_channels ,
depth = 2 ,
heads = heads ,
ff_dropout = dropout ,
attn_dropout = dropout ,
use_rmsnorm = True ,
ff_glu = True ,
rotary_pos_emb = True ,
)
)
self . latent_fade = nn . Parameter ( torch . zeros ( 1 , 1 , model_channels ) )
self . code_converter = Encoder (
dim = model_channels ,
depth = 3 ,
heads = heads ,
ff_dropout = dropout ,
attn_dropout = dropout ,
use_rmsnorm = True ,
ff_glu = True ,
rotary_pos_emb = True ,
)
self . unconditioned_embedding = nn . Parameter ( torch . randn ( 1 , 1 , model_channels ) )
self . mel_head = nn . Conv1d ( model_channels , in_channels , kernel_size = 3 , padding = 1 )
self . rotary_embeddings = RotaryEmbedding ( rotary_emb_dim )
self . intg = nn . Linear ( model_channels * 2 , model_channels )
self . layers = TimestepRotaryEmbedSequential ( * [ AttentionBlock ( model_channels , model_channels / / 64 , dropout ) for _ in range ( num_layers ) ] )
self . out = nn . Sequential (
normalization ( model_channels ) ,
nn . SiLU ( ) ,
zero_module ( conv_nd ( 1 , model_channels , out_channels , 3 , padding = 1 ) ) ,
)
self . debug_codes = { }
def get_grad_norm_parameter_groups ( self ) :
groups = {
' contextual_embedder ' : list ( self . conditioning_embedder . parameters ( ) ) ,
' layers ' : list ( self . layers . parameters ( ) ) + list ( self . inp_block . parameters ( ) ) ,
' code_converters ' : list ( self . embeddings . parameters ( ) ) + list ( self . code_converter . parameters ( ) ) + list ( self . latent_conditioner . parameters ( ) ) ,
' time_embed ' : list ( self . time_embed . parameters ( ) ) ,
}
return groups
def timestep_independent ( self , codes , conditioning_input , expected_seq_len , prenet_latent = None , return_code_pred = False ) :
cond_emb = self . conditioning_embedder ( conditioning_input ) . permute ( 0 , 2 , 1 )
cond_emb = self . conditioning_encoder ( cond_emb ) [ : , 0 ]
code_emb = self . embeddings ( codes )
if prenet_latent is not None :
latent_conditioning = self . latent_conditioner ( prenet_latent )
code_emb = code_emb + latent_conditioning * self . latent_fade
unconditioned_batches = torch . zeros ( ( code_emb . shape [ 0 ] , 1 , 1 ) , device = code_emb . device )
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
if self . training and self . unconditioned_percentage > 0 :
unconditioned_batches = torch . rand ( ( code_emb . shape [ 0 ] , 1 , 1 ) ,
device = code_emb . device ) < self . unconditioned_percentage
code_emb = torch . where ( unconditioned_batches , self . unconditioned_embedding . repeat ( codes . shape [ 0 ] , 1 , 1 ) ,
code_emb )
code_emb = self . code_converter ( code_emb )
expanded_code_emb = F . interpolate ( code_emb . permute ( 0 , 2 , 1 ) , size = expected_seq_len , mode = ' nearest ' ) . permute ( 0 , 2 , 1 )
if not return_code_pred :
return expanded_code_emb , cond_emb
else :
# Perform the mel_head computation on the pre-exanded code embeddings, then interpolate it separately.
mel_pred = self . mel_head ( code_emb . permute ( 0 , 2 , 1 ) )
mel_pred = F . interpolate ( mel_pred , size = expected_seq_len , mode = ' nearest ' )
# Multiply mel_pred by !unconditioned_branches, which drops the gradient on unconditioned branches.
# This is because we don't want that gradient being used to train parameters through the codes_embedder as
# it unbalances contributions to that network from the MSE loss.
mel_pred = mel_pred * unconditioned_batches . logical_not ( )
return expanded_code_emb , cond_emb , mel_pred
2022-05-27 17:12:03 +00:00
def forward ( self , x , timesteps , codes = None , conditioning_input = None , clvp_input = None , type = None , prenet_latent = None , precomputed_code_embeddings = None ,
2022-05-27 15:49:10 +00:00
precomputed_cond_embeddings = None , conditioning_free = False , return_code_pred = False ) :
if precomputed_code_embeddings is not None :
assert precomputed_cond_embeddings is not None , " Must specify both precomputed embeddings if one is specified "
assert codes is None and conditioning_input is None and prenet_latent is None , " Do not provide precomputed embeddings and the other parameters. It is unclear what you want me to do here. "
assert not ( return_code_pred and precomputed_code_embeddings is not None ) , " I cannot compute a code_pred output for you. "
2022-05-27 17:12:03 +00:00
assert type is not None , " Type is required. "
2022-05-27 15:49:10 +00:00
unused_params = [ ]
if not return_code_pred :
unused_params . extend ( list ( self . mel_head . parameters ( ) ) )
if conditioning_free :
code_emb = self . unconditioned_embedding . repeat ( x . shape [ 0 ] , 1 , x . shape [ - 1 ] )
unused_params . extend ( list ( self . code_converter . parameters ( ) ) + list ( self . code_embedding . parameters ( ) ) )
unused_params . extend ( list ( self . latent_conditioner . parameters ( ) ) )
else :
if precomputed_code_embeddings is not None :
code_emb = precomputed_code_embeddings
cond_emb = precomputed_cond_embeddings
else :
code_emb , cond_emb , mel_pred = self . timestep_independent ( codes , conditioning_input , x . shape [ - 1 ] , prenet_latent , True )
if prenet_latent is None :
unused_params . extend ( list ( self . latent_conditioner . parameters ( ) ) + [ self . latent_fade ] )
unused_params . append ( self . unconditioned_embedding )
clvp_emb = torch . zeros_like ( cond_emb ) if clvp_input is None else self . clvp_encoder ( clvp_input )
2022-05-27 17:12:03 +00:00
type_emb = self . type_embedding ( type )
2022-05-27 15:49:10 +00:00
if clvp_input is None :
unused_params . extend ( self . clvp_encoder . parameters ( ) )
2022-05-27 17:12:03 +00:00
blk_emb = self . time_embed ( timestep_embedding ( timesteps , self . model_channels ) ) + cond_emb + clvp_emb + type_emb
2022-05-27 15:49:10 +00:00
x = self . inp_block ( x ) . permute ( 0 , 2 , 1 )
rotary_pos_emb = self . rotary_embeddings ( x . shape [ 1 ] , x . device )
x = self . intg ( torch . cat ( [ x , code_emb ] , dim = - 1 ) )
x = self . layers ( x , blk_emb , rotary_pos_emb )
x = x . float ( ) . permute ( 0 , 2 , 1 )
out = self . out ( x )
# Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
extraneous_addition = 0
for p in unused_params :
extraneous_addition = extraneous_addition + p . mean ( )
out = out + extraneous_addition * 0
if return_code_pred :
return out , mel_pred
return out
@register_model
2022-05-27 17:12:03 +00:00
def register_transformer_diffusion_tts ( opt_net , opt ) :
2022-05-27 15:49:10 +00:00
return TransformerDiffusion ( * * opt_net [ ' kwargs ' ] )
if __name__ == ' __main__ ' :
clip = torch . randn ( 2 , 256 , 400 )
aligned_latent = torch . randn ( 2 , 100 , 512 )
aligned_sequence = torch . randint ( 0 , 8 , ( 2 , 100 , 8 ) )
cond = torch . randn ( 2 , 256 , 400 )
ts = torch . LongTensor ( [ 600 , 600 ] )
clvp = torch . randn ( 2 , 768 )
2022-05-27 17:19:30 +00:00
type = torch . LongTensor ( [ 0 , 1 ] )
2022-05-27 15:49:10 +00:00
model = TransformerDiffusion ( 512 , unconditioned_percentage = .5 , in_groups = 8 )
2022-05-27 17:19:30 +00:00
o = model ( clip , ts , aligned_sequence , cond , clvp_input = clvp , type = type , return_code_pred = True )
2022-05-27 15:49:10 +00:00
#o = model(clip, ts, aligned_sequence, cond, aligned_latent)