184 lines
8.5 KiB
Python
184 lines
8.5 KiB
Python
|
import torch
|
||
|
from torch import nn
|
||
|
from switched_conv import BareConvSwitch, compute_attention_specificity
|
||
|
import torch.nn.functional as F
|
||
|
import functools
|
||
|
from models.archs.arch_util import initialize_weights
|
||
|
import torchvision
|
||
|
from torchvision import transforms
|
||
|
|
||
|
|
||
|
class ConvBnLelu(nn.Module):
|
||
|
def __init__(self, filters_in, filters_out, kernel_size=3, stride=1, lelu=True):
|
||
|
super(ConvBnLelu, self).__init__()
|
||
|
padding_map = {1: 0, 3: 1, 5: 2, 7: 3}
|
||
|
assert kernel_size in padding_map.keys()
|
||
|
self.conv = nn.Conv2d(filters_in, filters_out, kernel_size, stride, padding_map[kernel_size])
|
||
|
self.bn = nn.BatchNorm2d(filters_out)
|
||
|
if lelu:
|
||
|
self.lelu = nn.LeakyReLU(negative_slope=.1)
|
||
|
else:
|
||
|
self.lelu = None
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.conv(x)
|
||
|
x = self.bn(x)
|
||
|
if self.lelu:
|
||
|
return self.lelu(x)
|
||
|
else:
|
||
|
return x
|
||
|
|
||
|
|
||
|
class ResidualBranch(nn.Module):
|
||
|
def __init__(self, filters_in, filters_out, kernel_size, depth):
|
||
|
super(ResidualBranch, self).__init__()
|
||
|
self.bnconvs = nn.ModuleList([ConvBnLelu(filters_in, filters_out, kernel_size)] +
|
||
|
[ConvBnLelu(filters_out, filters_out, kernel_size) for i in range(depth-2)] +
|
||
|
[ConvBnLelu(filters_out, filters_out, kernel_size, lelu=False)])
|
||
|
self.scale = nn.Parameter(torch.ones(1))
|
||
|
self.bias = nn.Parameter(torch.zeros(1))
|
||
|
|
||
|
def forward(self, x):
|
||
|
for m in self.bnconvs:
|
||
|
x = m.forward(x)
|
||
|
return x * self.scale + self.bias
|
||
|
|
||
|
|
||
|
# VGG-style layer with Conv->BN->Activation->Conv(stride2)->BN->Activation
|
||
|
class HalvingProcessingBlock(nn.Module):
|
||
|
def __init__(self, filters):
|
||
|
super(HalvingProcessingBlock, self).__init__()
|
||
|
self.bnconv1 = ConvBnLelu(filters, filters)
|
||
|
self.bnconv2 = ConvBnLelu(filters, filters * 2, stride=2)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.bnconv1(x)
|
||
|
return self.bnconv2(x)
|
||
|
|
||
|
|
||
|
class SwitchComputer(nn.Module):
|
||
|
def __init__(self, channels_in, filters, transform_block, transform_count, reductions, init_temp=20):
|
||
|
super(SwitchComputer, self).__init__()
|
||
|
self.filter_conv = ConvBnLelu(channels_in, filters)
|
||
|
self.blocks = nn.ModuleList([HalvingProcessingBlock(filters * 2 ** i) for i in range(reductions)])
|
||
|
final_filters = filters * 2 ** reductions
|
||
|
proc_block_filters = max(final_filters // 2, transform_count)
|
||
|
self.proc_switch_conv = ConvBnLelu(final_filters, proc_block_filters)
|
||
|
self.final_switch_conv = nn.Conv2d(proc_block_filters, transform_count, 1, 1, 0)
|
||
|
|
||
|
# Always include the identity transform (all zeros), hence transform_count-10
|
||
|
self.transforms = nn.ModuleList([transform_block() for i in range(transform_count-1)])
|
||
|
|
||
|
# And the switch itself
|
||
|
self.switch = BareConvSwitch(initial_temperature=init_temp)
|
||
|
|
||
|
def forward(self, x, output_attention_weights=False):
|
||
|
xformed = [t.forward(x) for t in self.transforms]
|
||
|
# Append the identity transform.
|
||
|
xformed.append(torch.zeros_like(xformed[0]))
|
||
|
|
||
|
multiplexer = self.filter_conv(x)
|
||
|
for block in self.blocks:
|
||
|
multiplexer = block.forward(multiplexer)
|
||
|
multiplexer = self.proc_switch_conv(multiplexer)
|
||
|
multiplexer = self.final_switch_conv.forward(multiplexer)
|
||
|
# Interpolate the multiplexer across the entire shape of the image.
|
||
|
multiplexer = F.interpolate(multiplexer, size=x.shape[2:], mode='nearest')
|
||
|
|
||
|
return self.switch(xformed, multiplexer, output_attention_weights)
|
||
|
|
||
|
def set_temperature(self, temp):
|
||
|
self.switch.set_attention_temperature(temp)
|
||
|
|
||
|
|
||
|
class SwitchedResidualGenerator(nn.Module):
|
||
|
def __init__(self, switch_filters, initial_temp=20, final_temperature_step=50000):
|
||
|
super(SwitchedResidualGenerator, self).__init__()
|
||
|
self.switch1 = SwitchComputer(3, switch_filters, functools.partial(ResidualBranch, 3, 3, kernel_size=7, depth=3), 4, 4, initial_temp)
|
||
|
self.switch2 = SwitchComputer(3, switch_filters, functools.partial(ResidualBranch, 3, 3, kernel_size=5, depth=3), 8, 3, initial_temp)
|
||
|
self.switch3 = SwitchComputer(3, switch_filters, functools.partial(ResidualBranch, 3, 3, kernel_size=3, depth=3), 16, 2, initial_temp)
|
||
|
self.switch4 = SwitchComputer(3, switch_filters, functools.partial(ResidualBranch, 3, 3, kernel_size=3, depth=2), 32, 1, initial_temp)
|
||
|
initialize_weights([self.switch1, self.switch2, self.switch3, self.switch4], 1)
|
||
|
# Initialize the transforms with a lesser weight, since they are repeatedly added on to the resultant image.
|
||
|
initialize_weights([self.switch1.transforms, self.switch2.transforms, self.switch3.transforms, self.switch4.transforms], .05)
|
||
|
|
||
|
self.init_temperature = initial_temp
|
||
|
self.final_temperature_step = final_temperature_step
|
||
|
self.running_sum = [0, 0, 0, 0]
|
||
|
self.running_count = 0
|
||
|
|
||
|
def forward(self, x):
|
||
|
sw1, self.a1 = self.switch1.forward(x, True)
|
||
|
x = x + sw1
|
||
|
sw2, self.a2 = self.switch2.forward(x, True)
|
||
|
x = x + sw2
|
||
|
sw3, self.a3 = self.switch3.forward(x, True)
|
||
|
x = x + sw3
|
||
|
sw4, self.a4 = self.switch4.forward(x, True)
|
||
|
x = x + sw4
|
||
|
|
||
|
a1mean, _ = compute_attention_specificity(self.a1, 2)
|
||
|
a2mean, _ = compute_attention_specificity(self.a2, 2)
|
||
|
a3mean, _ = compute_attention_specificity(self.a3, 2)
|
||
|
a4mean, _ = compute_attention_specificity(self.a4, 2)
|
||
|
running_sum = [
|
||
|
self.running_sum[0] + a1mean,
|
||
|
self.running_sum[1] + a2mean,
|
||
|
self.running_sum[2] + a3mean,
|
||
|
self.running_sum[3] + a4mean,
|
||
|
]
|
||
|
self.running_count += 1
|
||
|
|
||
|
return (x,)
|
||
|
|
||
|
def set_temperature(self, temp):
|
||
|
self.switch1.set_temperature(temp)
|
||
|
self.switch2.set_temperature(temp)
|
||
|
self.switch3.set_temperature(temp)
|
||
|
self.switch4.set_temperature(temp)
|
||
|
|
||
|
# Copied from torchvision.utils.save_image. Allows specifying pixel format.
|
||
|
def save_image(self, tensor, fp, nrow=8, padding=2,
|
||
|
normalize=False, range=None, scale_each=False, pad_value=0, format=None, pix_format=None):
|
||
|
from PIL import Image
|
||
|
grid = torchvision.utils.make_grid(tensor, nrow=nrow, padding=padding, pad_value=pad_value,
|
||
|
normalize=normalize, range=range, scale_each=scale_each)
|
||
|
# Add 0.5 after unnormalizing to [0, 255] to round to nearest integer
|
||
|
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy()
|
||
|
im = Image.fromarray(ndarr, mode=pix_format).convert('RGB')
|
||
|
im.save(fp, format=format)
|
||
|
|
||
|
def convert_attention_indices_to_image(self, attention_out, attention_size, step, fname_part="map", l_mult=1.0):
|
||
|
magnitude, indices = torch.topk(attention_out, 1, dim=-1)
|
||
|
magnitude = magnitude.squeeze(3)
|
||
|
indices = indices.squeeze(3)
|
||
|
# indices is an integer tensor (b,w,h) where values are on the range [0,attention_size]
|
||
|
# magnitude is a float tensor (b,w,h) [0,1] representing the magnitude of that attention.
|
||
|
# Use HSV colorspace to show this. Hue is mapped to the indices, Lightness is mapped to intensity,
|
||
|
# Saturation is left fixed.
|
||
|
hue = indices.float() / attention_size
|
||
|
saturation = torch.full_like(hue, .8)
|
||
|
value = magnitude * l_mult
|
||
|
hsv_img = torch.stack([hue, saturation, value], dim=1)
|
||
|
|
||
|
import os
|
||
|
os.makedirs("attention_maps/%s" % (fname_part,), exist_ok=True)
|
||
|
self.save_image(hsv_img, "attention_maps/%s/attention_map_%i.png" % (fname_part, step,), pix_format="HSV")
|
||
|
|
||
|
def get_debug_values(self, step):
|
||
|
# Take the chance to update the temperature here.
|
||
|
temp = max(1, int(self.init_temperature * (self.final_temperature_step - step) / self.final_temperature_step))
|
||
|
self.set_temperature(temp)
|
||
|
|
||
|
if step % 250 == 0:
|
||
|
self.convert_attention_indices_to_image(self.a1, 4, step, "a1")
|
||
|
self.convert_attention_indices_to_image(self.a2, 8, step, "a2")
|
||
|
self.convert_attention_indices_to_image(self.a3, 16, step, "a3", 2)
|
||
|
self.convert_attention_indices_to_image(self.a4, 32, step, "a4", 4)
|
||
|
|
||
|
val = {"switch_temperature": temp}
|
||
|
for i in range(len(self.running_sum)):
|
||
|
val["switch_%i_specificity" % (i,)] = self.running_sum[i] / self.running_count
|
||
|
self.running_sum[i] = 0
|
||
|
self.running_count = 0
|
||
|
return val
|