Checkin
This commit is contained in:
parent
dadc54795c
commit
31ee9ae262
|
@ -1,6 +1,7 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from tqdm import tqdm
|
||||
|
||||
from models.arch_util import ConvGnSilu
|
||||
from models.tacotron2.taco_utils import get_mask_from_lengths
|
||||
|
@ -9,6 +10,18 @@ from models.gpt_voice.min_gpt import GPT, GPTConfig
|
|||
from trainer.networks import register_model
|
||||
|
||||
|
||||
# A Conv1d that masks out kernel elements ahead of the current location.
|
||||
class CausalConv1d(nn.Conv1d):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.kernel_mask = torch.ones_like(self.weight)
|
||||
self.kernel_mask[:, :, -(self.kernel_size[0]//2):] = 0
|
||||
|
||||
def forward(self, input):
|
||||
self.kernel_mask = self.kernel_mask.to(input.device)
|
||||
return self._conv_forward(input, self.weight * self.kernel_mask, self.bias)
|
||||
|
||||
|
||||
class GptTts(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
@ -18,21 +31,28 @@ class GptTts(nn.Module):
|
|||
max_mel_frames = 900
|
||||
mel_dim=80
|
||||
|
||||
self.model_dim = model_dim
|
||||
self.max_mel_frames = max_mel_frames
|
||||
self.text_embedding = nn.Embedding(number_symbols, model_dim)
|
||||
self.mel_encoder = nn.Sequential(ConvGnSilu(mel_dim, model_dim//2, kernel_size=3, convnd=nn.Conv1d),
|
||||
ConvGnSilu(model_dim//2, model_dim, kernel_size=3, stride=2, convnd=nn.Conv1d))
|
||||
# Whenever we process MEL frames, we need to be careful to use casually masked convolutions to avoid adding bias
|
||||
# into the model which we cannot provide in inference.
|
||||
self.mel_encoder = nn.Sequential(ConvGnSilu(mel_dim, model_dim//2, kernel_size=5, convnd=CausalConv1d),
|
||||
ConvGnSilu(model_dim//2, model_dim, kernel_size=5, stride=2, convnd=CausalConv1d))
|
||||
# *_tags are additively applied to
|
||||
self.text_tags = nn.Parameter(torch.randn(1, 1, model_dim)/256.0)
|
||||
self.separator = nn.Parameter(torch.randn(1, 1, model_dim))
|
||||
self.audio_tags = nn.Parameter(torch.randn(1, 1, model_dim)/256.0)
|
||||
self.gpt = GPT(GPTConfig(max_symbols_per_phrase+max_mel_frames//2, n_embd=model_dim, n_head=8))
|
||||
self.gpt = GPT(GPTConfig(1+max_symbols_per_phrase+max_mel_frames//2, n_embd=model_dim, n_head=8))
|
||||
|
||||
self.gate_head = nn.Sequential(ConvGnSilu(model_dim, model_dim, kernel_size=5, convnd=nn.Conv1d),
|
||||
self.gate_head = nn.Sequential(ConvGnSilu(model_dim, model_dim, kernel_size=5, convnd=CausalConv1d),
|
||||
nn.Upsample(scale_factor=2, mode='nearest'),
|
||||
ConvGnSilu(model_dim, model_dim//2, kernel_size=5, convnd=nn.Conv1d),
|
||||
ConvGnSilu(model_dim, model_dim//2, kernel_size=5, convnd=CausalConv1d),
|
||||
# No need for causal convolutions when kernel_size=1
|
||||
nn.Conv1d(model_dim//2, 1, kernel_size=1))
|
||||
self.mel_head = nn.Sequential(ConvGnSilu(model_dim, model_dim, kernel_size=5, convnd=nn.Conv1d),
|
||||
self.mel_head = nn.Sequential(ConvGnSilu(model_dim, model_dim, kernel_size=5, convnd=CausalConv1d),
|
||||
nn.Upsample(scale_factor=2, mode='nearest'),
|
||||
ConvGnSilu(model_dim, model_dim//2, kernel_size=5, convnd=nn.Conv1d),
|
||||
ConvGnSilu(model_dim//2, model_dim//2, kernel_size=5, convnd=nn.Conv1d),
|
||||
ConvGnSilu(model_dim, model_dim//2, kernel_size=5, convnd=CausalConv1d),
|
||||
ConvGnSilu(model_dim//2, model_dim//2, kernel_size=5, convnd=CausalConv1d),
|
||||
ConvGnSilu(model_dim//2, mel_dim, kernel_size=1, activation=False, norm=False, convnd=nn.Conv1d))
|
||||
|
||||
def forward(self, text_inputs, mel_targets, output_lengths):
|
||||
|
@ -45,9 +65,11 @@ class GptTts(nn.Module):
|
|||
text_emb = text_emb + self.text_tags
|
||||
mel_emb = self.mel_encoder(mel_targets).permute(0,2,1)
|
||||
mel_emb = mel_emb + self.audio_tags
|
||||
emb = torch.cat([text_emb, mel_emb], dim=1)
|
||||
emb = torch.cat([text_emb,
|
||||
self.separator.repeat(text_emb.shape[0],1,1),
|
||||
mel_emb], dim=1)
|
||||
enc = self.gpt(emb)
|
||||
mel_portion = enc[:, text_emb.shape[1]:].permute(0,2,1)
|
||||
mel_portion = enc[:, text_emb.shape[1]+1:].permute(0,2,1)
|
||||
gates = self.gate_head(mel_portion).squeeze(1)
|
||||
mel_pred = self.mel_head(mel_portion)
|
||||
|
||||
|
@ -62,6 +84,53 @@ class GptTts(nn.Module):
|
|||
gates = gates[:, :-1]
|
||||
return mel_pred, gates
|
||||
|
||||
def test_guide(self, mel_guide, amount=50):
|
||||
mel_guide = mel_guide[:,:,:amount]
|
||||
mel_emb = self.mel_encoder(mel_guide).permute(0,2,1)
|
||||
mel_emb = mel_emb + self.audio_tags
|
||||
return mel_emb
|
||||
|
||||
def inference(self, text_inputs, mel_guide):
|
||||
MEL_HEAD_EXPANSION = 2
|
||||
GATE_THRESHOLD = .95
|
||||
|
||||
text_emb = self.text_embedding(text_inputs)
|
||||
text_emb = text_emb + self.text_tags
|
||||
b,s,c = text_emb.shape
|
||||
emb = torch.cat([text_emb,
|
||||
self.separator.repeat(text_emb.shape[0],1,1)], dim=1)
|
||||
#self.test_guide(mel_guide)], dim=1)
|
||||
completed = torch.zeros((b,), device=text_inputs.device, dtype=torch.bool)
|
||||
output = None
|
||||
for i in tqdm(range(self.max_mel_frames)):
|
||||
enc = self.gpt(emb)
|
||||
inferred = enc[:,s:,:].permute(0,2,1)
|
||||
# Create output frames.
|
||||
inferred_mel_frame = self.mel_head(inferred)[:,:,-MEL_HEAD_EXPANSION:]
|
||||
inferred_mel_frame = inferred_mel_frame * (~completed).float().view(b,1,1)
|
||||
if output is None:
|
||||
output = inferred_mel_frame
|
||||
else:
|
||||
output = torch.cat([output, inferred_mel_frame], dim=2)
|
||||
|
||||
# Test termination condition
|
||||
gate = F.sigmoid(self.gate_head(inferred)).max(dim=-1).values # TODO: accept single-frame terminations.
|
||||
completed = completed.logical_or((gate > GATE_THRESHOLD).squeeze(1)) # This comprises a latch - but that may not be wise.
|
||||
if torch.all(completed):
|
||||
break
|
||||
|
||||
# Apply inferred mel_frames to emb for next pass.
|
||||
mel_emb = self.mel_encoder(output).permute(0,2,1)
|
||||
mel_emb = mel_emb + self.audio_tags
|
||||
emb = torch.cat([text_emb,
|
||||
self.separator.repeat(text_emb.shape[0],1,1),
|
||||
mel_emb], dim=1)
|
||||
if i == self.max_mel_frames//2:
|
||||
print("Warning! Inference hit mel frame cap without encountering a stop token.")
|
||||
break
|
||||
|
||||
return output
|
||||
|
||||
|
||||
@register_model
|
||||
def register_gpt_tts(opt_net, opt):
|
||||
|
@ -74,4 +143,9 @@ if __name__ == '__main__':
|
|||
torch.randn(2,80,747),
|
||||
torch.tensor([600,747]))
|
||||
print(m.shape)
|
||||
print(g.shape)
|
||||
print(g.shape)
|
||||
|
||||
o = gpt.infer(torch.randint(high=24, size=(2,60)))
|
||||
print(o.shape)
|
||||
|
||||
|
||||
|
|
|
@ -40,7 +40,7 @@ if __name__ == "__main__":
|
|||
torch.backends.cudnn.benchmark = True
|
||||
want_metrics = False
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/test_vqvae_audio_lj.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/test_gpt_tts_lj.yml')
|
||||
opt = option.parse(parser.parse_args().opt, is_train=False)
|
||||
opt = option.dict_to_nonedict(opt)
|
||||
utils.util.loaded_options = opt
|
||||
|
|
Loading…
Reference in New Issue
Block a user