cifar: add hard routing

Also mods switched_routing to support non-pixular inputs
This commit is contained in:
James Betker 2021-06-06 14:53:43 -06:00
parent 692e9c417b
commit 57e1a6a0f2
2 changed files with 30 additions and 9 deletions

View File

@ -11,6 +11,7 @@
import torch
import torch.nn as nn
from models.switched_conv.switched_conv_hard_routing import HardRoutingGate
from trainer.networks import register_model
@ -111,7 +112,7 @@ class ResNetTail(nn.Module):
class ResNet(nn.Module):
def __init__(self, block, num_block, num_classes=100, num_tails=8):
def __init__(self, block, num_block, num_classes=100, num_tails=8, dropout_rate=.2):
super().__init__()
self.in_channels = 32
self.conv1 = nn.Sequential(
@ -123,6 +124,9 @@ class ResNet(nn.Module):
self.conv3_x = self._make_layer(block, 64, num_block[1], 2)
self.tails = nn.ModuleList([ResNetTail(block, num_block, 256) for _ in range(num_tails)])
self.selector = ResNetTail(block, num_block, num_tails)
self.selector_gate = nn.Linear(256, 1)
self.gate = HardRoutingGate(num_tails, hard_en=True)
self.dropout_rate = dropout_rate
self.final_linear = nn.Linear(256, num_classes)
def _make_layer(self, block, out_channels, num_blocks, stride):
@ -144,8 +148,16 @@ class ResNet(nn.Module):
keys = torch.stack(keys, dim=1)
query = self.selector(output).unsqueeze(2)
attn = torch.nn.functional.softmax(query * keys, dim=1)
values = self.final_linear(attn * keys)
selector = self.selector_gate(query * keys).squeeze(-1)
if self.training and self.dropout_rate > 0:
bs, br = selector.shape
drop = torch.rand((bs, br), device=x.device) > self.dropout_rate
# Ensure that there is always at least one switch left un-dropped out
fix_blank = (drop.sum(dim=1, keepdim=True) == 0).repeat(1, br)
drop = drop.logical_or(fix_blank)
selector = drop * selector
selector = self.gate(selector)
values = self.final_linear(selector.unsqueeze(-1) * keys)
return values.sum(dim=1)
@ -181,5 +193,8 @@ def resnet152():
if __name__ == '__main__':
model = ResNet(BasicBlock, [2,2,2,2])
print(model(torch.randn(2,3,32,32), torch.LongTensor([4,7])).shape)
v = model(torch.randn(2,3,32,32), torch.LongTensor([4,7]))
print(v.shape)
l = nn.MSELoss()(v, torch.randn_like(v))
l.backward()

View File

@ -63,7 +63,9 @@ class SwitchedConvHardRoutingFunction(torch.autograd.Function):
class RouteTop1(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
mask = torch.nn.functional.one_hot(input.argmax(dim=1), num_classes=input.shape[1]).permute(0,3,1,2)
mask = torch.nn.functional.one_hot(input.argmax(dim=1), num_classes=input.shape[1])
if len(input.shape) > 2:
mask = mask.permute(0, 3, 1, 2) # TODO: Make this more extensible.
out = torch.ones_like(input)
out[mask != 1] = 0
ctx.save_for_backward(mask, input.clone())
@ -116,7 +118,8 @@ class SwitchNorm(nn.Module):
self.register_buffer("accumulator", torch.zeros(accumulator_size, group_size))
def add_norm_to_buffer(self, x):
flat = x.sum(dim=[0, 2, 3])
flatten_dims = [0] + [k+2 for k in range(len(x)-2)]
flat = x.sum(dim=flatten_dims)
norm = flat / torch.mean(flat)
self.accumulator[self.accumulator_index] = norm.detach().clone()
@ -126,9 +129,9 @@ class SwitchNorm(nn.Module):
if self.accumulator_filled <= 0:
self.accumulator_filled += 1
# Input into forward is a switching tensor of shape (batch,groups,width,height)
# Input into forward is a switching tensor of shape (batch,groups,<misc>)
def forward(self, x: torch.Tensor, update_attention_norm=True):
assert len(x.shape) == 4
assert len(x.shape) >= 2
# Push the accumulator to the right device on the first iteration.
if self.accumulator.device != x.device:
@ -148,7 +151,10 @@ class SwitchNorm(nn.Module):
norm = torch.mean(self.accumulator, dim=0)
else:
norm = torch.ones(self.group_size, device=self.accumulator.device)
x = x / norm.view(1,-1,1,1)
while len(x.shape) < len(norm.shape):
norm = norm.unsqueeze(-1)
x = x / norm
# Need to re-normalize x so that the groups dimension sum to 1, just like when it was fed in.
return x / x.sum(dim=1, keepdim=True)