Add script for extracting image tiles with reference images

This commit is contained in:
James Betker 2020-09-17 13:30:51 -06:00
parent 9963b37200
commit 57fc3f490c

View File

@ -9,6 +9,7 @@ import lmdb
import pyarrow
import torch.utils.data as data
from tqdm import tqdm
import torch
def main():
@ -19,15 +20,28 @@ def main():
opt['compression_level'] = 90 # JPEG compression quality rating.
# CV_IMWRITE_PNG_COMPRESSION from 0 to 9. A higher value means a smaller size and longer
# compression time. If read raw images during training, use 0 for faster IO speed.
if mode == 'single':
opt['input_folder'] = 'F:\\4k6k\\datasets\\ns_images\\imagesets\\images'
opt['save_folder'] = 'F:\\4k6k\\datasets\\ns_images\\imagesets\\lmdb_with_ref'
opt['crop_sz'] = 512 # the size of each sub-image
opt['step'] = 128 # step of the sliding crop window
opt['dest'] = 'file'
opt['input_folder'] = 'F:\\4k6k\\datasets\\ns_images\\vixen\\full_video_segments'
opt['save_folder'] = 'F:\\4k6k\\datasets\\ns_images\\vixen\\full_video_with_refs'
opt['crop_sz'] = [256, 512, 1024] # the size of each sub-image
opt['step'] = 256 # step of the sliding crop window
opt['thres_sz'] = 128 # size threshold
opt['resize_final_img'] = .5
opt['resize_final_img'] = [1, .5, .25]
opt['only_resize'] = False
extract_single(opt, split_img)
save_folder = opt['save_folder']
if not osp.exists(save_folder):
os.makedirs(save_folder)
print('mkdir [{:s}] ...'.format(save_folder))
if opt['dest'] == 'lmdb':
writer = LmdbWriter(save_folder)
else:
writer = FileWriter(save_folder)
extract_single(opt, writer, split_img)
elif mode == 'pair':
GT_folder = '../../datasets/div2k/DIV2K_train_HR'
LR_folder = '../../datasets/div2k/DIV2K_train_LR_bicubic/X4'
@ -91,7 +105,7 @@ class LmdbWriter:
self.keys = []
# Writes the given reference image to the db and returns its ID.
def write_reference_image(self, ref_img):
def write_reference_image(self, ref_img, _):
id = self.ref_id
self.ref_id += 1
self.write_image(id, ref_img[0], ref_img[1])
@ -123,6 +137,48 @@ class LmdbWriter:
self.db.close()
class FileWriter:
def __init__(self, folder):
self.folder = folder
self.next_unique_id = 0
self.ref_center_points = {} # Maps ref_img basename to a dict of image IDs:center points
self.ref_ids_to_names = {}
def get_next_unique_id(self):
id = self.next_unique_id
self.next_unique_id += 1
return id
def save_image(self, ref_path, img_name, img):
save_path = osp.join(self.folder, ref_path)
os.makedirs(save_path, exist_ok=True)
f = open(osp.join(save_path, img_name), "wb")
f.write(img)
f.close()
# Writes the given reference image to the db and returns its ID.
def write_reference_image(self, ref_img, path):
ref_img, _ = ref_img # Encoded with a center point, which is irrelevant for the reference image.
img_name = osp.basename(path).replace(".jpg", "").replace(".png", "")
self.ref_center_points[img_name] = {}
self.save_image(img_name, "ref.jpg", ref_img)
id = self.get_next_unique_id()
self.ref_ids_to_names[id] = img_name
return id
# Writes a tile image to the db given a reference image and returns its ID.
def write_tile_image(self, ref_id, tile_image):
id = self.get_next_unique_id()
ref_name = self.ref_ids_to_names[ref_id]
img, center = tile_image
self.ref_center_points[ref_name][id] = center
self.save_image(ref_name, "%08i.jpg" % (id,), img)
return id
def close(self):
for ref_name, cps in self.ref_center_points.items():
torch.save(cps, osp.join(self.folder, ref_name, "centers.pt"))
class TiledDataset(data.Dataset):
def __init__(self, opt, split_mode=False):
self.split_mode = split_mode
@ -136,16 +192,48 @@ class TiledDataset(data.Dataset):
else:
return self.get(index, False, False)
def get(self, index, split_mode, left_img):
path = self.images[index]
crop_sz = self.opt['crop_sz']
def get_for_scale(self, img, split_mode, left_img, crop_sz, resize_factor):
step = self.opt['step']
thres_sz = self.opt['thres_sz']
only_resize = self.opt['only_resize']
h, w, c = img.shape
if split_mode:
w = w/2
h_space = np.arange(0, h - crop_sz + 1, step)
if h - (h_space[-1] + crop_sz) > thres_sz:
h_space = np.append(h_space, h - crop_sz)
w_space = np.arange(0, w - crop_sz + 1, step)
if w - (w_space[-1] + crop_sz) > thres_sz:
w_space = np.append(w_space, w - crop_sz)
index = 0
tile_dim = int(crop_sz * resize_factor)
dsize = (tile_dim, tile_dim)
results = []
for x in h_space:
for y in w_space:
index += 1
crop_img = img[x:x + crop_sz, y:y + crop_sz, :]
center_point = (x + crop_sz // 2, y + crop_sz // 2)
crop_img = np.ascontiguousarray(crop_img)
if 'resize_final_img' in self.opt.keys():
# Resize too.
center_point = (int(center_point[0] * resize_factor), int(center_point[1] * resize_factor))
crop_img = cv2.resize(crop_img, dsize, interpolation=cv2.INTER_AREA)
success, buffer = cv2.imencode(".jpg", crop_img, [cv2.IMWRITE_JPEG_QUALITY, self.opt['compression_level']])
assert success
results.append((buffer, center_point))
return results
def get(self, index, split_mode, left_img):
path = self.images[index]
img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
# We must convert the image into a square. Crop the image so that only the center is left, since this is often
# the most salient part of the image.
if len(img.shape) == 2: # Greyscale not supported.
return None
h, w, c = img.shape
dim = min(h, w)
img = img[(h - dim) // 2:dim + (h - dim) // 2, (w - dim) // 2:dim + (w - dim) // 2, :]
@ -153,7 +241,7 @@ class TiledDataset(data.Dataset):
h, w, c = img.shape
# Uncomment to filter any image that doesnt meet a threshold size.
if min(h,w) < 1024:
return
return None
left = 0
right = w
if split_mode:
@ -163,48 +251,20 @@ class TiledDataset(data.Dataset):
else:
left = int(w/2)
right = w
w = int(w/2)
img = img[:, left:right]
h_space = np.arange(0, h - crop_sz + 1, step)
if h - (h_space[-1] + crop_sz) > thres_sz:
h_space = np.append(h_space, h - crop_sz)
w_space = np.arange(0, w - crop_sz + 1, step)
if w - (w_space[-1] + crop_sz) > thres_sz:
w_space = np.append(w_space, w - crop_sz)
tile_dim = int(self.opt['crop_sz'][0] * self.opt['resize_final_img'][0])
dsize = (tile_dim, tile_dim)
dsize = None
if only_resize:
dsize = (crop_sz, crop_sz)
if h < w:
h_space = [0]
w_space = [(w - h) // 2]
crop_sz = h
else:
h_space = [(h - w) // 2]
w_space = [0]
crop_sz = w
index = 0
resize_factor = self.opt['resize_final_img'] if 'resize_final_img' in self.opt.keys() else 1
dsize = (int(crop_sz * resize_factor), int(crop_sz * resize_factor))
# Reference image should always be first.
results = [(cv2.resize(img, dsize, interpolation=cv2.INTER_AREA), (-1,-1))]
for x in h_space:
for y in w_space:
index += 1
crop_img = img[x:x + crop_sz, y:y + crop_sz, :]
center_point = (x + crop_sz // 2, y + crop_sz // 2)
crop_img = np.ascontiguousarray(crop_img)
if 'resize_final_img' in self.opt.keys():
# Resize too.
resize_factor = self.opt['resize_final_img']
center_point = (int(center_point[0] * resize_factor), int(center_point[1] * resize_factor))
crop_img = cv2.resize(crop_img, dsize, interpolation=cv2.INTER_AREA)
success, buffer = cv2.imencode(".jpg", crop_img, [cv2.IMWRITE_JPEG_QUALITY, self.opt['compression_level']])
# Reference image should always be first entry in results.
ref_img = cv2.resize(img, dsize, interpolation=cv2.INTER_AREA)
success, ref_buffer = cv2.imencode(".jpg", ref_img, [cv2.IMWRITE_JPEG_QUALITY, self.opt['compression_level']])
assert success
results.append((buffer, center_point))
return results
results = [(ref_buffer, (-1,-1))]
for crop_sz, resize_factor in zip(self.opt['crop_sz'], self.opt['resize_final_img']):
results.extend(self.get_for_scale(img, split_mode, left_img, crop_sz, resize_factor))
return results, path
def __len__(self):
return len(self.images)
@ -213,23 +273,20 @@ class TiledDataset(data.Dataset):
def identity(x):
return x
def extract_single(opt, split_img=False):
save_folder = opt['save_folder']
if not osp.exists(save_folder):
os.makedirs(save_folder)
print('mkdir [{:s}] ...'.format(save_folder))
lmdb = LmdbWriter(save_folder)
def extract_single(opt, writer, split_img=False):
dataset = TiledDataset(opt, split_img)
dataloader = data.DataLoader(dataset, num_workers=opt['n_thread'], collate_fn=identity)
tq = tqdm(dataloader)
for imgs in tq:
if imgs is None or imgs[0] is None:
continue
imgs, path = imgs[0]
if imgs is None or len(imgs) <= 1:
continue
ref_id = lmdb.write_reference_image(imgs[0])
ref_id = writer.write_reference_image(imgs[0], path)
for tile in imgs[1:]:
lmdb.write_tile_image(ref_id, tile)
lmdb.close()
writer.write_tile_image(ref_id, tile)
writer.close()
if __name__ == '__main__':