Add zipfilesdataset
This commit is contained in:
parent
1a2b9fa130
commit
6649ef2dae
|
@ -55,6 +55,8 @@ def create_dataset(dataset_opt):
|
|||
from data.byol_attachment import DatasetRandomAugWrapper as D
|
||||
elif mode == 'random_dataset':
|
||||
from data.random_dataset import RandomDataset as D
|
||||
elif mode == 'zipfile':
|
||||
from data.zip_file_dataset import ZipFileDataset as D
|
||||
else:
|
||||
raise NotImplementedError('Dataset [{:s}] is not recognized.'.format(mode))
|
||||
dataset = D(dataset_opt)
|
||||
|
|
64
codes/data/zip_file_dataset.py
Normal file
64
codes/data/zip_file_dataset.py
Normal file
|
@ -0,0 +1,64 @@
|
|||
import PIL.Image
|
||||
import zipfile
|
||||
import torch
|
||||
import torchvision
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision.transforms import Compose, ToTensor, Normalize, Resize
|
||||
|
||||
|
||||
class ZipFileDataset(torch.utils.data.Dataset):
|
||||
def __init__(self, opt):
|
||||
self.path = opt['path']
|
||||
zip = zipfile.ZipFile(self.path)
|
||||
self.all_files = list(zip.namelist())
|
||||
self.resolution = opt['resolution']
|
||||
self.paired_mode = opt['paired_mode']
|
||||
self.transforms = Compose([ToTensor(),
|
||||
Resize(self.resolution),
|
||||
Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
|
||||
])
|
||||
self.zip = None
|
||||
|
||||
def __len__(self):
|
||||
return len(self.all_files)
|
||||
|
||||
# Loaded on the fly because ZipFile does not tolerate pickling.
|
||||
def get_zip(self):
|
||||
if self.zip is None:
|
||||
self.zip = zipfile.ZipFile(self.path)
|
||||
return self.zip
|
||||
|
||||
def load_image(self, path):
|
||||
file = self.get_zip().open(path, 'r')
|
||||
pilimg = PIL.Image.open(file)
|
||||
tensor = self.transforms(pilimg)
|
||||
return tensor
|
||||
|
||||
def __getitem__(self, i):
|
||||
fname = self.all_files[i]
|
||||
out = {
|
||||
'hq': self.load_image(fname),
|
||||
'HQ_path': fname,
|
||||
'has_alt': self.paired_mode
|
||||
}
|
||||
if self.paired_mode:
|
||||
if fname.endswith('0.jpg'):
|
||||
aname = fname.replace('0.jpg', '1.jpg')
|
||||
else:
|
||||
aname = fname.replace('1.jpg', '0.jpg')
|
||||
out['alt_hq'] = self.load_image(aname)
|
||||
return out
|
||||
|
||||
if __name__ == '__main__':
|
||||
opt = {
|
||||
'path': 'E:\\4k6k\\datasets\\images\\youtube-imagenet-paired\\output.zip',
|
||||
'resolution': 224,
|
||||
'paired_mode': True
|
||||
}
|
||||
dataset = ZipFileDataset(opt)
|
||||
print(len(dataset))
|
||||
loader = DataLoader(dataset, shuffle=True)
|
||||
for i, d in enumerate(loader):
|
||||
torchvision.utils.save_image(d['hq'], f'{i}_hq.png')
|
||||
torchvision.utils.save_image(d['alt_hq'], f'{i}_althq.png')
|
||||
|
Loading…
Reference in New Issue
Block a user