text<->cond clip
I need that universal clip..
This commit is contained in:
parent
8ada52ccdc
commit
851070075a
112
codes/models/gpt_voice/text_cond_clip.py
Normal file
112
codes/models/gpt_voice/text_cond_clip.py
Normal file
|
@ -0,0 +1,112 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
from torch import einsum
|
||||
|
||||
from models.gpt_voice.unified_voice2 import ConditioningEncoder
|
||||
from models.lucidrains.dalle.transformer import Transformer
|
||||
from trainer.networks import register_model
|
||||
from utils.util import opt_get
|
||||
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
|
||||
def masked_mean(t, mask, dim = 1):
|
||||
t = t.masked_fill(~mask[:, :, None], 0.)
|
||||
return t.sum(dim = 1) / mask.sum(dim = 1)[..., None]
|
||||
|
||||
|
||||
class VoiceCondCLIP(nn.Module):
|
||||
"""
|
||||
CLIP model retrofitted for performing contrastive evaluation between tokenized audio data and an encoded conditioning
|
||||
clip.
|
||||
|
||||
Originally from https://github.com/lucidrains/DALLE-pytorch/blob/main/dalle_pytorch/dalle_pytorch.py
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
dim_speech=512,
|
||||
dim_latent=512,
|
||||
num_speech_tokens=8192,
|
||||
speech_enc_depth=6,
|
||||
speech_heads=8,
|
||||
speech_seq_len=250,
|
||||
voice_mask_percentage=0,
|
||||
wav_token_compression=1024,
|
||||
):
|
||||
super().__init__()
|
||||
self.cond_encoder = ConditioningEncoder(80, dim_latent, do_checkpointing=True)
|
||||
|
||||
self.speech_emb = nn.Embedding(num_speech_tokens, dim_speech)
|
||||
self.speech_pos_emb = nn.Embedding(num_speech_tokens, dim_speech)
|
||||
self.speech_transformer = Transformer(causal=False, seq_len=speech_seq_len, dim=dim_speech,
|
||||
depth=speech_enc_depth, heads=speech_heads, rotary_emb=False)
|
||||
self.to_speech_latent = nn.Linear(dim_speech, dim_latent, bias=False)
|
||||
|
||||
self.temperature = nn.Parameter(torch.tensor(1.))
|
||||
self.voice_mask_percentage = voice_mask_percentage
|
||||
self.wav_token_compression = wav_token_compression
|
||||
|
||||
def forward(
|
||||
self,
|
||||
cond_mel,
|
||||
speech_tokens,
|
||||
wav_lengths,
|
||||
return_loss=False
|
||||
):
|
||||
# This model will receive micro-batches with a ton of padding for the speech tokens. Ameliorate this by
|
||||
# chopping the inputs by the maximum actual length.
|
||||
max_mel_len = wav_lengths.max() // self.wav_token_compression
|
||||
speech_tokens = speech_tokens[:, :max_mel_len]
|
||||
|
||||
b, device = speech_tokens.shape[0], speech_tokens.device
|
||||
if self.training:
|
||||
voice_mask = torch.rand_like(speech_tokens.float()) > self.voice_mask_percentage
|
||||
else:
|
||||
voice_mask = torch.ones_like(speech_tokens.float()).bool()
|
||||
|
||||
speech_emb = self.speech_emb(speech_tokens)
|
||||
speech_emb += self.speech_pos_emb(torch.arange(speech_emb.shape[1], device=device))
|
||||
|
||||
cond_latents = self.cond_encoder(cond_mel)
|
||||
|
||||
enc_speech = self.speech_transformer(speech_emb, mask=voice_mask)
|
||||
speech_latents = masked_mean(enc_speech, voice_mask, dim=1)
|
||||
speech_latents = self.to_speech_latent(speech_latents)
|
||||
|
||||
cond_latents, speech_latents = map(lambda t: F.normalize(t, p=2, dim=-1), (cond_latents, speech_latents))
|
||||
|
||||
temp = self.temperature.exp()
|
||||
|
||||
if not return_loss:
|
||||
sim = einsum('n d, n d -> n', cond_latents, speech_latents) * temp
|
||||
return sim
|
||||
|
||||
sim = einsum('i d, j d -> i j', cond_latents, speech_latents) * temp
|
||||
labels = torch.arange(b, device=device)
|
||||
loss = (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2
|
||||
return loss
|
||||
|
||||
|
||||
@register_model
|
||||
def register_voice_cond_clip(opt_net, opt):
|
||||
return VoiceCondCLIP(**opt_get(opt_net, ['kwargs'], {}))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
clip = VoiceCondCLIP(voice_mask_percentage=.2)
|
||||
clip(torch.randn(2,80,400),
|
||||
torch.randint(0,8192,(2,250)),
|
||||
torch.tensor([101,102]),
|
||||
return_loss=True)
|
||||
nonloss = clip(
|
||||
torch.randn(2, 80, 400),
|
||||
torch.randint(0,8192,(2,250)),
|
||||
torch.tensor([101,102]),
|
||||
return_loss=False)
|
||||
print(nonloss.shape)
|
Loading…
Reference in New Issue
Block a user