Enable lambda visualization

This commit is contained in:
James Betker 2021-01-23 15:53:27 -07:00
parent 10ec6bda1d
commit ae4ff4a1e7
2 changed files with 19 additions and 0 deletions

View File

@ -63,6 +63,7 @@ class SwitchedConv(nn.Module):
if selector is None: # A coupler can convert from any input to a selector, so 'None' is allowed. if selector is None: # A coupler can convert from any input to a selector, so 'None' is allowed.
selector = inp selector = inp
selector = F.softmax(self.coupler(selector), dim=1) selector = F.softmax(self.coupler(selector), dim=1)
self.last_select = selector.detach().clone()
out_shape = [s // self.stride for s in inp.shape[2:]] out_shape = [s // self.stride for s in inp.shape[2:]]
if selector.shape[2] != out_shape[0] or selector.shape[3] != out_shape[1]: if selector.shape[2] != out_shape[0] or selector.shape[3] != out_shape[1]:
selector = F.interpolate(selector, size=out_shape, mode="nearest") selector = F.interpolate(selector, size=out_shape, mode="nearest")

View File

@ -1,4 +1,7 @@
import os
import torch import torch
import torchvision
from torch import nn from torch import nn
from torch.nn import functional as F from torch.nn import functional as F
@ -172,6 +175,7 @@ class VQVAE(nn.Module):
): ):
super().__init__() super().__init__()
self.breadth = breadth
self.enc_b = Encoder(in_channel, channel, n_res_block, n_res_channel, stride=4, breadth=breadth) self.enc_b = Encoder(in_channel, channel, n_res_block, n_res_channel, stride=4, breadth=breadth)
self.enc_t = Encoder(channel, channel, n_res_block, n_res_channel, stride=2, breadth=breadth) self.enc_t = Encoder(channel, channel, n_res_block, n_res_channel, stride=2, breadth=breadth)
self.quantize_conv_t = nn.Conv2d(channel, codebook_dim, 1) self.quantize_conv_t = nn.Conv2d(channel, codebook_dim, 1)
@ -200,6 +204,20 @@ class VQVAE(nn.Module):
return dec, diff return dec, diff
def save_attention_to_image_rgb(self, output_file, attention_out, attention_size, cmap_discrete_name='viridis'):
from matplotlib import cm
magnitude, indices = torch.topk(attention_out, 3, dim=1)
indices = indices.cpu()
colormap = cm.get_cmap(cmap_discrete_name, attention_size)
img = torch.tensor(colormap(indices[:, 0, :, :].detach().numpy())) # TODO: use other k's
img = img.permute((0, 3, 1, 2))
torchvision.utils.save_image(img, output_file)
def visual_dbg(self, step, path):
convs = [self.dec.blocks[-1].conv, self.dec_t.blocks[-1].conv, self.enc_b.blocks[-4], self.enc_t.blocks[-4]]
for i, c in enumerate(convs):
self.save_attention_to_image_rgb(os.path.join(path, "%i_selector_%i.png" % (step, i+1)), c.last_select, self.breadth)
def encode(self, input): def encode(self, input):
enc_b = checkpoint(self.enc_b, input) enc_b = checkpoint(self.enc_b, input)
enc_t = checkpoint(self.enc_t, enc_b) enc_t = checkpoint(self.enc_t, enc_b)