Misc
This commit is contained in:
parent
3d0ece804b
commit
bdaa67deb7
|
@ -4,11 +4,13 @@ import time
|
|||
import argparse
|
||||
from collections import OrderedDict
|
||||
|
||||
import os
|
||||
import options.options as option
|
||||
import utils.util as util
|
||||
from data.util import bgr2ycbcr
|
||||
import models.archs.SwitchedResidualGenerator_arch as srg
|
||||
from switched_conv_util import save_attention_to_image
|
||||
from switched_conv_util import save_attention_to_image, save_attention_to_image_rgb
|
||||
from switched_conv import compute_attention_specificity
|
||||
from data import create_dataset, create_dataloader
|
||||
from models import create_model
|
||||
from tqdm import tqdm
|
||||
|
@ -22,14 +24,37 @@ import models.networks as networks
|
|||
def alter_srg(srg: srg.ConfigurableSwitchedResidualGenerator2):
|
||||
# First alteration, strip off switches one at a time.
|
||||
yield "naked"
|
||||
|
||||
'''
|
||||
for i in range(1, len(srg.switches)):
|
||||
srg.switches = srg.switches[:-i]
|
||||
yield "stripped-%i" % (i,)
|
||||
'''
|
||||
|
||||
for sw in srg.switches:
|
||||
sw.set_temperature(.001)
|
||||
yield "specific"
|
||||
|
||||
for sw in srg.switches:
|
||||
sw.set_temperature(1000)
|
||||
yield "normalized"
|
||||
|
||||
for sw in srg.switches:
|
||||
sw.set_temperature(1)
|
||||
sw.switch.attention_norm = None
|
||||
yield "no_anorm"
|
||||
return None
|
||||
|
||||
def analyze_srg(srg: srg.ConfigurableSwitchedResidualGenerator2, path, alteration_suffix):
|
||||
[save_attention_to_image(path, srg.attentions[i], srg.transformation_counts, i, "attention_" + alteration_suffix,
|
||||
l_mult=5) for i in range(len(srg.attentions))]
|
||||
mean_hists = [compute_attention_specificity(att, 2) for att in srg.attentions]
|
||||
means = [i[0] for i in mean_hists]
|
||||
hists = [torch.histc(i[1].clone().detach().cpu().flatten().float(), bins=srg.transformation_counts) for i in mean_hists]
|
||||
hists = [h / torch.sum(h) for h in hists]
|
||||
for i in range(len(means)):
|
||||
print("%s - switch_%i_specificity" % (alteration_suffix, i), means[i])
|
||||
print("%s - switch_%i_histogram" % (alteration_suffix, i), hists[i])
|
||||
|
||||
[save_attention_to_image_rgb(path, srg.attentions[i], srg.transformation_counts, alteration_suffix, i) for i in range(len(srg.attentions))]
|
||||
|
||||
|
||||
def forward_pass(model, output_dir, alteration_suffix=''):
|
||||
|
@ -60,7 +85,7 @@ if __name__ == "__main__":
|
|||
#### options
|
||||
torch.backends.cudnn.benchmark = True
|
||||
want_just_images = True
|
||||
srg_analyze = True
|
||||
srg_analyze = False
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to options YMAL file.', default='../options/analyze_srg.yml')
|
||||
opt = option.parse(parser.parse_args().opt, is_train=False)
|
||||
|
@ -106,14 +131,16 @@ if __name__ == "__main__":
|
|||
model_copy.load_state_dict(orig_model.state_dict())
|
||||
model.netG = model_copy
|
||||
for alteration_suffix in alter_srg(model_copy):
|
||||
alt_path = osp.join(dataset_dir, alteration_suffix)
|
||||
img_path = data['GT_path'][0] if need_GT else data['LQ_path'][0]
|
||||
img_name = osp.splitext(osp.basename(img_path))[0]
|
||||
img_name = osp.splitext(osp.basename(img_path))[0] + opt['name']
|
||||
alteration_suffix += img_name
|
||||
os.makedirs(alt_path, exist_ok=True)
|
||||
forward_pass(model, dataset_dir, alteration_suffix)
|
||||
analyze_srg(model_copy, dataset_dir, alteration_suffix)
|
||||
analyze_srg(model_copy, alt_path, alteration_suffix)
|
||||
# Reset model and do next alteration.
|
||||
model_copy = networks.define_G(opt).to(model.device)
|
||||
model_copy.load_state_dict(orig_model.state_dict())
|
||||
model.netG = model_copy
|
||||
else:
|
||||
forward_pass(model, dataset_dir)
|
||||
forward_pass(model, dataset_dir, opt['name'])
|
||||
|
|
|
@ -32,7 +32,7 @@ def init_dist(backend='nccl', **kwargs):
|
|||
def main():
|
||||
#### options
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_imgset_spsr_switched.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_imgset_spsr_switched_lr2.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
|
||||
help='job launcher')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
|
@ -161,7 +161,7 @@ def main():
|
|||
current_step = resume_state['iter']
|
||||
model.resume_training(resume_state) # handle optimizers and schedulers
|
||||
else:
|
||||
current_step = -1
|
||||
current_step = 0
|
||||
start_epoch = 0
|
||||
|
||||
#### training
|
||||
|
|
58
sandbox.py
58
sandbox.py
|
@ -1,22 +1,56 @@
|
|||
import torch
|
||||
import torchvision
|
||||
from PIL import Image
|
||||
from pytorch_wavelets import DWTForward, DWTInverse
|
||||
import torch.nn.functional as F
|
||||
|
||||
def load_img(path):
|
||||
im = Image.open(path)
|
||||
im = Image.open(path).convert(mode="RGB")
|
||||
return torchvision.transforms.ToTensor()(im)
|
||||
|
||||
def save_img(t, path):
|
||||
torchvision.utils.save_image(t, path)
|
||||
|
||||
img = load_img("me.png")
|
||||
# add zeros to the imaginary component
|
||||
img = torch.stack([img, torch.zeros_like(img)], dim=-1)
|
||||
fft = torch.fft(img, signal_ndim=2)
|
||||
fft_d = torch.zeros_like(fft)
|
||||
for i in range(-5, 5):
|
||||
diag = torch.diagonal(fft, offset=i, dim1=1, dim2=2)
|
||||
diag_em = torch.diag_embed(diag, offset=i, dim1=1, dim2=2)
|
||||
fft_d += diag_em
|
||||
resamp_img = torch.ifft(fft_d, signal_ndim=2)[:, :, :, 0]
|
||||
save_img(resamp_img, "resampled.png")
|
||||
img = load_img("pu.jpg")
|
||||
img = img.unsqueeze(0)
|
||||
|
||||
# Reshape image to be multiple of 32
|
||||
w, h = img.shape[2:]
|
||||
w = (w // 32) * 32
|
||||
h = (h // 32) * 32
|
||||
img = F.interpolate(img, size=(w, h))
|
||||
print("Input shape:", img.shape)
|
||||
|
||||
J_spec = 5
|
||||
|
||||
Yl, Yh = DWTForward(J=J_spec, mode='periodization', wave='db3')(img)
|
||||
print(Yl.shape, [h.shape for h in Yh])
|
||||
|
||||
imgLR = F.interpolate(img, scale_factor=.5)
|
||||
LQYl, LQYh = DWTForward(J=J_spec-1, mode='periodization', wave='db3')(imgLR)
|
||||
print(LQYl.shape, [h.shape for h in LQYh])
|
||||
|
||||
for i in range(J_spec):
|
||||
smd = torch.sum(Yh[i], dim=2).cpu()
|
||||
save_img(smd, "high_%i.png" % (i,))
|
||||
save_img(Yl, "lo.png")
|
||||
|
||||
'''
|
||||
Following code reconstructs the image with different high passes cancelled out.
|
||||
'''
|
||||
for i in range(J_spec):
|
||||
corrupted_im = [y for y in Yh]
|
||||
corrupted_im[i] = torch.zeros_like(corrupted_im[i])
|
||||
im = DWTInverse(mode='periodization', wave='db3')((Yl, corrupted_im))
|
||||
save_img(im, "corrupt_%i.png" % (i,))
|
||||
im = DWTInverse(mode='periodization', wave='db3')((torch.full_like(Yl, fill_value=torch.mean(Yl)), Yh))
|
||||
save_img(im, "corrupt_im.png")
|
||||
|
||||
|
||||
'''
|
||||
Following code reconstructs a hybrid image with the first high pass from the HR and the rest of the data from the LR.
|
||||
highpass = [Yh[0]] + LQYh
|
||||
im = DWTInverse(mode='periodization', wave='db3')((LQYl, highpass))
|
||||
save_img(im, "hybrid_lrhr.png")
|
||||
save_img(F.interpolate(imgLR, scale_factor=2), "upscaled.png")
|
||||
'''
|
Loading…
Reference in New Issue
Block a user