Latent space playground

This commit is contained in:
James Betker 2020-11-29 09:33:29 -07:00
parent a1d4c9f83c
commit f2422f1d75

View File

@ -128,6 +128,36 @@ def extract_center_latent(ref, lat):
return ref[:, :, math.floor(dh):-math.ceil(dh), math.floor(dw):-math.ceil(dw)]
def linear_interpolation(latents1, latents2, proportion):
return [l1*proportion+l2*(1-proportion) for l1, l2 in zip(latents1, latents2)]
def slerp(latents1, latents2, proportion):
res = []
for low, high in zip(latents1, latents2):
low_norm = low / torch.norm(low, dim=[2,3], keepdim=True)
high_norm = high / torch.norm(high, dim=[2,3], keepdim=True)
omega = torch.acos((low_norm * high_norm).sum(1))
so = torch.sin(omega)
res.append((torch.sin((1.0 - proportion) * omega) / so).unsqueeze(1) * low + (torch.sin(proportion * omega) / so).unsqueeze(1) * high)
return res
def create_interpolation_video(gen, lq, output_file, latents1, latents2, steps=10):
for i in range(steps):
proportion = i / (steps-1)
lats = linear_interpolation(latents1, latents2, proportion)
hr, _ = gen(lr=lq,
z=lats[0],
reverse=True,
epses=lats,
add_gt_noise=False)
torchvision.transforms.ToPILImage()(hr.squeeze(0).cpu())
torchvision.utils.save_image(hr.cpu(), os.path.join(output_file, "%i.png" % (i,)))
# Stopped using this because PILs animated gif output is total crap.
#images[0].save(output_file, save_all=True, append_images=images[1:], duration=80, loop=0)
if __name__ == "__main__":
#### options
torch.backends.cudnn.benchmark = True
@ -150,17 +180,18 @@ if __name__ == "__main__":
gen = model.networks['generator']
gen.eval()
mode = "feed_through" # restore | latent_transfer | feed_through
mode = "temperature" # temperature | restore | latent_transfer | feed_through
#imgs_to_resample_pattern = "F:\\4k6k\\datasets\\ns_images\\adrianna\\val2\\lr\\*"
imgs_to_resample_pattern = "F:\\4k6k\\datasets\\ns_images\\adrianna\\pure_adrianna_full\\images\\*"
#imgs_to_resample_pattern = "F:\\4k6k\\datasets\\ns_images\\adrianna\\analyze\\analyze_xx\\*"
imgs_to_resample_pattern = "F:\\4k6k\\datasets\\ns_images\\imagesets\\images-half\\*lanette*"
scale = 2
resample_factor = 2 # When != 1, the HR image is upsampled by this factor using a bicubic to get the local latents.
temperature = .3
resample_factor = 1 # When != 1, the HR image is upsampled by this factor using a bicubic to get the local latents.
temperature = 1
output_path = "E:\\4k6k\\mmsr\\results\\latent_playground"
# Data types <- used to perform latent transfer.
data_path = "F:\\4k6k\\datasets\\ns_images\\imagesets\\images-half"
data_type_filters = ["*alexa*", "*lanette*", "*80755*", "*x-art-1912*", "*joli_high*", "*stacy-cruz*"]
data_type_filters = ["*alexa*", "*lanette*", "*80755*", "*joli_high*"]
#data_type_filters = ["*lanette*"]
max_size = 1100 # Should be set to 2x the largest single dimension of the input space, otherwise an error will occur.
max_ref_datatypes = 30 # Only picks this many images from the above data types to sample from.
@ -183,7 +214,6 @@ if __name__ == "__main__":
cvimg = torch2cv(img)
cvimg = corruptor.corrupt_images([cvimg])[0]
img = cv2torch(cvimg)
torchvision.utils.save_image(img, "corrupted_lq_%i.png" % (random.randint(0, 100),))
return img
dt_latents = [fetch_latents_for_image(gen, i, scale, corrupt_and_downsample) for i in dt_transfers]
@ -214,6 +244,8 @@ if __name__ == "__main__":
dts.append([extract_center_latent(sl, l) * temperature for l, sl in zip(latents, slat)])
latents = dts
multiple_latents = True
elif mode == "temperature":
latents = [l * temperature for l in latents]
# Re-compute each image with the new metrics
if not multiple_latents:
@ -221,13 +253,8 @@ if __name__ == "__main__":
else:
lats = latents
for j in range(len(lats)):
hr, _ = gen(lr=F.interpolate(resample_img, scale_factor=1/scale, mode="area"),
z=lats[j][0],
reverse=True,
epses=lats[j],
add_gt_noise=False)
if torch.isnan(torch.max(hr)):
continue
os.makedirs(os.path.join(output_path), exist_ok=True)
torchvision.utils.save_image(resample_img, os.path.join(output_path, "%i_orig.jpg" %(im_it)))
torchvision.utils.save_image(hr, os.path.join(output_path, "%i_%i.jpg" % (im_it,j)))
path = os.path.join(output_path, "%i_%i" % (im_it, j))
os.makedirs(path, exist_ok=True)
torchvision.utils.save_image(resample_img, os.path.join(path, "%i_orig.jpg" %(im_it)))
create_interpolation_video(gen, F.interpolate(resample_img, scale_factor=1/scale, mode="area"),
path, [torch.zeros_like(l) for l in lats[j]], lats[j])