This is a concept from "Lifelong Learning GAN", although I'm skeptical of it's novelty -
basically you scale and shift the weights for the generator and discriminator of a pretrained
GAN to "shift" into new modalities, e.g. faces->birds or whatever. There are some interesting
applications of this that I would like to try out.
Renames AttentiveRRDB to SwitchedRRDB. Moves SwitchedConv to
an external repo (neonbjb/switchedconv). Switchs RDB blocks instead
of conv blocks. Works good!
This is a checkpoint of a set of long tests with reduced-complexity networks. Some takeaways:
1) A full GAN using the resnet discriminator does appear to converge, but the quality is capped.
2) Likewise, a combination GAN/feature loss does not converge. The feature loss is optimized but
the model appears unable to fight the discriminator, so the G-loss steadily increases.
Going forwards, I want to try some bigger models. In particular, I want to change the generator
to increase complexity and capacity. I also want to add skip connections between the
disc and generator.