- Makes skip connections between the generator and discriminator more
extensible by adding additional configuration options for them and supporting
1 and 0 skips.
- Places the temp/ directory with sample images from the training process appear
in the training directory instead of the codes/ directory.
Model swapout is a feature where, at specified intervals,
a random D and G model will be swapped in place for the
one being trained. After a short period of time, this model
is swapped back out. This is intended to increase training
diversity.
This network is just a fixed (pre-trained) generator
that performs a corruption transformation that the
generator-in-training is expected to undo alongside
SR.
It now injects noise directly into the input filters, rather than a
pure noise filter. The pure noise filter was producing really
poor results (and I'm honestly not quite sure why).
Implements a ResGenv2 architecture which slightly increases the complexity
of the final output layer but causes it to be shared across all skip outputs.
It's been a tough day figuring out WTH is going on with my discriminators.
It appears the raw FixUp discriminator can get into an "defective" state where
they stop trying to learn and just predict as close to "0" D_fake and D_real as
possible. In this state they provide no feedback to the generator and never
recover. Adding batch norm back in seems to fix this so it must be some sort
of parameterization error.. Should look into fixing this in the future.
I want to be able to specify many different transformations onto
the target data; the model should handle them all. Do this by
allowing multiple LQ paths to be selected and the dataset class
selects one at random.