I want to be able to specify many different transformations onto
the target data; the model should handle them all. Do this by
allowing multiple LQ paths to be selected and the dataset class
selects one at random.
This is a checkpoint of a set of long tests with reduced-complexity networks. Some takeaways:
1) A full GAN using the resnet discriminator does appear to converge, but the quality is capped.
2) Likewise, a combination GAN/feature loss does not converge. The feature loss is optimized but
the model appears unable to fight the discriminator, so the G-loss steadily increases.
Going forwards, I want to try some bigger models. In particular, I want to change the generator
to increase complexity and capacity. I also want to add skip connections between the
disc and generator.
This bad boy is for a workflow where you train a model on disjoint image sets to
downsample a "good" set of images like a "bad" set of images looks. You then
use that downsampler to generate a training set of paired images for supersampling.